Discovery of Ecopladib, an Indole Inhibitor of Cytosolic Phospholipase $A_2\alpha$

Katherine L. Lee,^{*,†} Megan A. Foley,[†] Lihren Chen,[†] Mark L. Behnke,[†] Frank E. Lovering,[†] Steven J. Kirincich,[†] Weiheng Wang,[†] Jaechul Shim,^{||} Steve Tam,[†] Marina W. H. Shen,[‡] SooPeang Khor,[⊥] Xin Xu,[⊥] Debra G. Goodwin,[‡] Manjunath K. Ramarao,[‡] Cheryl Nickerson-Nutter,[‡] Frances Donahue,[§] M. Sherry Ku,[§] James D. Clark,[‡] and John C. McKew[†]

Departments of Chemical and Screening Sciences, Inflammation, Drug Safety and Metabolism, and Chemical and Pharmaceutical Development, Wyeth Research, 200 CambridgePark Drive, Cambridge, Massachusetts 02140

Received September 28, 2006

The synthesis and structure–activity relationship of a series of indole inhibitors of cytosolic phospholipase $A_2\alpha$ (cPLA₂ α , type IVA phospholipase) are described. Inhibitors of cPLA₂ α are predicted to be efficacious in treating asthma as well as the signs and symptoms of osteoarthritis, rheumatoid arthritis, and pain. The introduction of a benzyl sulfonamide substituent at C2 was found to impart improved potency of these inhibitors, and the SAR of these sulfonamide analogues is disclosed. Compound **123** (Ecopladib) is a sub-micromolar inhibitor of cPLA₂ α in the GLU micelle and rat whole blood assays. Compound **123** displayed *oral* efficacy in the rat carrageenan air pouch and rat carrageenan-induced paw edema models.

Introduction

Cytosolic phospholipase $A_2\alpha$ (cPLA₂ α ,^{*a*} type IVA phospholipase) catalyzes the selective release of arachidonic acid from the sn-2 position of glycerophospholipids to initiate the production of leukotrienes, prostaglandins, and thromboxanes. The 1-Oalkyl-2-OH-glycerophosphocholine remaining after arachidonic acid release can be acetylated to form another inflammatory mediator, platelet-activating factor (PAF). The release of arachidonic acid and PAF synthesis are linked as evidenced by studies in cells and animals where depletion of arachidonate at the sn-2 position of phospholipids results in lower levels of PAF synthesis.1 In addition, the timecourse of synthesis of leukotrienes and PAF are the same.² Although the PLA₂ family is large and diverse,³ cPLA₂ α is the only lipase with significant selectivity for arachidonic acid^{4,5} which originally suggested that it is the primary PLA2 responsible for prostaglandin, leukotriene, and PAF production. Experiments with $cPLA_2\alpha$ deficient mice demonstrated that prostaglandin and leukotriene production was reduced by $\sim 90\%$,^{6,7} confirming the primacy of cPLA₂ α in lipid mediator production.

cPLA₂ α deficient mice are generally healthy with a defect in induction of labor that is also seen with the cyclooxygenase-1 (COX-1) deficient mice^{8,9} and slightly reduced litter size, which was more pronounced in the COX-2 deficient mice.^{10,11} The cPLA₂ α deficient mice were resistant to disease in multiple models including an ova-induced anaphylaxis model of asthma,⁶ a bleomycin-induced model of idiopathic pulmonary fibrosis,⁸ acid and LPS-induced adult respiratory distress syndrome,¹² a collagen-induced arthritis model of rheumatoid arthritis,¹³ an MPTP-induced Parkinson's model,¹⁴ a model of colon cancer in the APC mouse,^{15,16} an ischemia reperfusion model of stroke,¹⁷ and a model of multiple sclerosis.¹⁸ Deficiencies in COX-2,^{19,20,21} 5-lipoxygenase (5-LO),^{22,23} and 5-LO activating protein²⁴ each lead to resistance in a subset of these models, which demonstrates the position of cPLA₂ α at the head of the biochemical pathway.

Several classes of cPLA₂ α inhibitors have been reported in the literature,²⁵ and recently, reviews by Lehr²⁶ and Kokotos²⁷ have been published. Seno and co-workers at Shionogi have reported a class of pyrrolidine inhibitors represented in Chart 1 by compound 1.^{28,29} Indole inhibitors with a C2 carboxylic acid (e.g., **2**) have been reported by Lehr and co-workers.^{30,31,32} Propanone inhibitors (e.g., **4**) have been described by Connolly and co-workers.³³ Dennis and co-workers have reported 2-oxoamide inhibitors represented by compound **5**³⁴ and showed efficacy in the rat carrageenan-induced edema assay with intraperitoneal dosing.³⁵ and in models of pain with intrathecal dosing.³⁶ Recently, Lehr has reported potent in vitro activity with indolylpropanone inhibitors such as compound **6**.³⁷

We evaluated some of these inhibitors (or a close analogue thereof, e.g., 3) in our primary assays. In the GLU micelle assay, purified human cPLA₂ cleaves an artificial substrate, 7-hydroxycoumarinyl- γ -linolenate (GLU) that is presented in a high concentration of Triton micelles containing nonhydrolyzable 1,2di-O-tetradecyl-sn-glycero-3-phosphocholine (DTPC) to promote calcium binding of the enzyme to the micelle. Of the compounds tested, compounds 1 and 4 displayed sub-micromolar activity in the GLU micelle assay. The second assay is the rat whole blood (RWB) assay, which is stringent due to both the presence of high lipid content and serum albumin. Only the Shionogi pyrrolidine 1 showed sub-micromolar activity in the RWB assay, as shown in Chart 1. Since clinically efficacious doses of NSAIDs, COX-2 inhibitors and 5-LO inhibitors give plasma levels comparable to the IC₅₀s in whole blood assays, it is likely that $cPLA_2\alpha$ inhibitors will need to show efficacy in whole blood assays.38,39

^{*} To whom correspondence should be addressed. Phone: (617) 665-5664. Fax: (617) 665-5682. E-mail: klee@wyeth.com.

[†] Chemical and Screening Sciences, Cambridge, MA

^{II} Current address: Chemical and Screening Sciences, Pearl River, NY. [‡] Inflammation, Cambridge, MA.

^{*} Inflammation, Cambridge, MA.

¹ Drug Safety and Metabolism, Andover, MA. [§] Chemical and Pharmaceutical Development, Pearl River, NY.

^{*a*} Abbreviations: cPLA₂α, cytosolic phospholipase A₂α; PAF, plateletactivating factor; COX, cyclooxygenase; LPS, lipopolysaccharide; MPTP, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine; 5-LO, 5-lipoxygenase; FLAP, 5-LO activating protein; GLU, 7-hydroxycoumarinyl- γ -linolenate; DTPC, 1,2-di-*O*-tetradecyl-*sn*-glycero-3-phosphocholine; RWB, rat whole blood; NSAID, nonsteroidal antiinflammatory drug; MC, methylcellulose; MCT, medium chain triglyceride; MAFP, methyl arachindonyl fluorophosphonate; PAPC, 1-palmitoyl-2-arachidonyl-*sn*-glycero-3-phosphocholine; PAPE, 1-palmitoyl-2-arachidonyl-*sn*-glycero-3-phosphocholine; SPLA₂, secreted PLA₂; IgE, immunoglobulin E; PG, prostaglandin; LT, leukotriene; TX, thromboxane; HETE, hydroxyeicosatetraenoic acid; FT-ICR, Fourier transform ion cyclotron resonance; ESI, electrospray ionization; CPE, carrageenan paw edema.

Chart 1. Examples of cPLA₂ Inhibitors

Our group has previously disclosed indole inhibitors of cPLA₂ α , including compounds **7** and **8** (Chart 2).^{40,41} 2-Methylindoles **7** and **8** (Chart 2) are low micromolar inhibitors of cPLA₂ α in the two primary assays. The IC₅₀ values of **7** and **8** in the GLU micelle assay are 3.0 and 0.8 μ M respectively, which for **7** corresponds to one inhibitor per >350 molecules of detergent and lipid. Thus, the inhibitor must be interacting with cPLA₂ α and not be acting to disrupt the membrane surface. Compounds **7** and **8** have IC₅₀s of 7.0 and 2.0 μ M, respectively, in the RWB assay.

Our efforts to synthesize more potent cPLA₂ α inhibitors by increasing the substitution at C2 are reported here. We had defined a two-part pharmacophore for cPLA₂ α inhibition in the *N*-benzhydryl group and C3 benzoic acid, and we sought to engineer a third interaction with the enzyme. Although compound 8 is more potent than 7, we decided to focus our optimization efforts starting with 7 because it has a significantly lower clearance in rats (3.2 versus 44 mL/min/kg).

Chemistry

A variety of different substituents and linker lengths were required to adequately explore the SAR at the indole C2 position and several different routes were developed to deliver the diverse analogues required. Compounds with one-carbon substituents at C2 were synthesized as outlined in Scheme 1. A reductive alkylation method to install C3 substituents on indoles has previously been reported.^{42,43} C2 methyl indole 9^{41} was converted to the dibromide and then treated with silver carbonate to afford aldehyde **10**. N-Alkylation with benzyl bromide then afforded compound **12a**. Indole **11**⁴¹ was oxidized using a similar protocol to afford indole **12b**. Reduction of **12b** with NaBH₄ gave alcohol **13**, which was converted to amine **17** in a three-step procedure. Derivatization of the amine afforded carbamate **19** and sulfonamides **21a** and **21b**. Ester hydrolysis of selected compounds afforded the related carboxylic acids.

Alcohol **30** was synthesized as described in Scheme 2. 5-Chloroindole (**23**) underwent Friedel-Crafts acylation with oxalyl chloride and reduction with LiAlH₄. Alcohol **24** was activated as the mesylate and displaced with methyl 4-hydroxybenzoate. Indole **26** was then brominated at C2. N-Alkylation afforded benzhydryl derivative **28**. Ester hydrolysis afforded carboxylic acid **29**, which after treatment with excess *tert*-BuLi to make the dianion, was treated with ethylene oxide to afford alcohol **30**.

The syntheses of C2 aminoethyl derivatives are described in Scheme 3. Henry reaction of aldehydes **12a** and **12b** followed

Scheme 1^a

^{*a*} Reagents: (a) NBS, CCl₄; (b) Ag₂CO₃, acetone, H₂O; (c) NaH, BnBr, DMF; (d) NaBH₄, THF, MeOH; (e) 1 N NaOH, THF, MeOH; (f) MsCl, Et₃N, CH₂Cl₂; (g) NaN₃, DMF; (h) PPh₃, H₂O, THF; (i) BnOCOCl, Et₃N, CH₂Cl₂; (j) R³SO₂Cl, sat. NaHCO₃, CH₂Cl₂.

by Zn(Hg) reduction^{44,45} of the nitroolefins afforded amines **32a** and **32b**. The use of THF instead of MeOH as the solvent for the reduction minimized the formation of undesired byproducts. Carbamoylation and acylation of amine **32b** and ester hydrolysis yielded carbamate **35** and amide **37**, respectively. Reductive amination of **32b** with phenylacetaldehyde and subsequent ester hydrolysis afforded phenethylamine **39**.

As shown in Scheme 4, reaction of amine **32b** with various sulfonyl chlorides followed by ester hydrolysis provided sulfonamides **41a**, **41b**, **41d**, and **41e**, while a similar sequence with *N*-benzyl indole **32a** afforded **41c**. N-Methylation of sulfonamide **40d** using silver(I) oxide in neat MeI followed by ester hydrolysis yielded compound **43**. Using palladium catalysis,⁴⁶ 5-chloroindole **41d** was converted to the 5-morpholino derivative **44**.

The preparation of reverse sulfonamide **50** is depicted in Scheme 5. Aldehyde **12b** was homologated in a two-step sequence. Borohydride reduction of the resulting aldehyde **46** and subsequent bromination produced bromide **48**. Displacement of the bromine with Na_2SO_3 afforded the sodium sulfonate. The sulfonyl chloride was then prepared and coupled without

purification with benzyl amine. Finally, ester hydrolysis yielded sulfonamide **50**.

Scheme 6 shows the preparation of derivatives with a threecarbon linker at C2. Wittig olefination of aldehyde **12b**, followed by allyl deprotection and hydrogenation, afforded carboxylic acid **52**. Reduction to the alcohol and bromination resulted in bromide **55**, which was converted to sulfonamide **57** by reaction with α -toluenesulfonamide and subsequent ester hydrolysis. Bromide **55** was reacted with benzyl mercaptan, and the resulting thioether was oxidized with MCPBA. Ester hydrolysis afforded sulfone **59**.

Functionalization of the C3 benzoic acid (Scheme 7) yielded compounds **60** and **61**. Primary amide **60** was formed by treating carboxylic acid **41d** with CDI and NH₄OH. Reduction of acid **41d** to alcohol **61** was carried out by conversion to the acid fluoride and NaBH₄ reduction.⁴⁷

Scheme 8 depicts the synthesis of *m*- and *o*-carboxylates **75a** and **75b**. Iodoaniline **62** was N-alkylated then subjected to Sonogashira coupling and cyclization⁴⁸ to form indole **65**. The alcohol was then masked as a silyl ether. Acylation at C3 and reduction of the resulting ketoester intermediate using excess

Scheme 2^a

^{*a*} Reagents: (a) (COCl)₂, Et₂O, then MeOH, Et₃N; (b) LiAlH₄, THF; (c) MsCl, Et₃N, CH₂Cl₂; (d) methyl 4-hydroxybenzoate, NaH, DMF; (e) NBS, CCl₄; (f) NaH, Ph₂CHBr, DMF; (g) 1 N NaOH, THF, MeOH; (h) NaH, *t*-BuLi, ethylene oxide, THF.

Scheme 3^a

^{*a*} Reagents: (a) NH₄OAc, MeNO₂; (b) Zn(Hg), concd HCl, THF; (c) 1 N NaOH, MeOH, THF; (d) BnOCOCl, Et₃N, CH₂Cl₂; (e) BnCOCl, sat. NaHCO₃, CH₂Cl₂; (f) PhCH₂CHO, NaBH(OAc)₃, ClCH₂CH₂Cl.

BH₃·Me₂S afforded alcohol **67**, which underwent Mitsunobu reaction with the two hydroxybenzoate isomers **68a** and **68b**. For each benzoate Mitsunobu product, the silyl ether was converted in a four-step sequence via the azide to the amines **73a** and **73b**. Sulfonylation and ester hydrolysis of amines **73a** and **73b** afforded meta- and ortho-substituted benzoic acids **75a** and **75b**, respectively.

The syntheses of the 5-nitroindoles **92** and **93** are shown in Scheme 9. 4-Nitroaniline (**79**) was iodinated and then N-alkylated with benzhydryl bromide to afford aniline **81**, which was reacted with alkyne **78** to afford an inseparable mixture of two indole regioisomers **82** and **83** (ca. 1:1.5 ratio).⁴⁸ The mixture of alcohols was mesylated and converted to the azides

86 and **87**. Following reduction, amines **88** and **89** were separated by flash chromatography and identified by NMR analysis. Each isomer was then converted separately to the corresponding sulfonamide. Ester hydrolysis afforded the carboxylic acids **92** and **93**.

6-Chloroindole derivative **105** was synthesized according to Scheme 10. Treatment of 4-chloro-2-nitrotoluene (**96**) with diethyl oxalate and cyclization in the presence of iron yielded indole **97** in a modified Reissert indole synthesis.⁴⁹ The ester was reduced with LiAlH₄ and oxidized with MnO₂ to afford aldehyde **99**. N-Alkylation with benzhydryl bromide afforded aldehyde **100**, which then underwent Henry reaction, LiAlH₄ reduction to the amine, and sulfonylation to afford intermediate

^{*a*} Reagents: (a) R³SO₂Cl, sat. NaHCO₃ or DIEA, CH₂Cl₂; (b) 1 N NaOH, MeOH, THF; (c) Ag₂O, MeI (d) morpholine, Pd₂(dba)₃, NaOt-Bu, bis(t-Bu)biphenyl, toluene.

Scheme 5^a

^{*a*} Reagents: (a) Ph₃P=CHOMe, THF; (b) NaI, TMSCl, MeCN; (c) NaBH₄, THF-MeOH; (d) CBr₄, DPPP, CH₂Cl₂; (e) Na₂SO₃, H₂O-dioxane; (f) SOCl₂, DMF, CH₂Cl₂; (g) BnNH₂, sat. NaHCO₃, CH₂Cl₂; (h) 1 N NaOH, THF, MeOH.

103. The benzoate moiety was introduced by reductive alkylation^{42,43} with methyl 4-(2,2-diethoxyethoxy)benzoate (**94**).⁵⁰ Ester hydrolysis afforded indole **105**.

N-Isopropyl and substituted benzyl indole derivatives were prepared using the reaction sequence in Scheme 11. 4-Chloro-2-iodoaniline (106) underwent reductive amination⁵¹ with

acetone to afford **107a**. Alkylation of **106** with 3,4-dichlorobenzyl bromide afforded **107b**. These iodides were each coupled with 3-butyn-1-ol and cyclized to the indoles **109a** and **109b** respectively; silyl ether formation then afforded **110a** and **110b**. Following C3 reductive alkylation^{42,43} with methyl 4-(2-oxoethoxy)benzoate (**95**), the indole derivatives were converted to

Scheme 6^a

^{*a*} Reagents: (a) Ph₃P=CHCO₂Allyl, THF; (b) Pd(PPh₃)₄, morpholine, THF; (c) H₂, 5% Pt/C, MeOH; (d) (COCl)₂, CH₂Cl₂; then Zn(BH₄)₂, TMEDA, THF; (e) PS-PPh₃, CBr₄, CH₂Cl₂; (f) NaH, PhCH₂SO₂NH₂, DMF; (g) 1 N NaOH, MeOH, THF; (h) NaH, PhCH₂SH, DMF; (i) MCPBA, CH₂Cl₂.

the C2 amines in a three-step sequence. Sulfonylation and ester hydrolysis afforded indoles **117a** and **117b**.

Results and Discussion

In our initial efforts to increase the potency of our indole $cPLA_2\alpha$ inhibitors, derivatives with a one- or two-carbon linker at C2 were examined (Table 1). Compared to the C2 methyl derivative 7, some improvement in potency was observed in the one carbon alcohol 14 in the RWB assay, but the two-carbon alcohol 30 gave no improvement. Among the two-carbon amine derivatives studied, the sulfonamides (e.g., 41a, 41b, 41d, 41e) offered improved potency compared to compound 7. Phenylmethane sulfonamide 41d, a potent inhibitor of $cPLA_2\alpha$ in both the GLU micelle and RWB assays, represented an important advancement in this area.

Further exploration of the SAR of the benzyl sulfonamide is revealed in Table 2. Sulfonamide **22b** illustrates the importance of a two-atom linker between the indole core and sulfonamide: shifting the sulfonamide functionality one atom closer to the indole while keeping the overall linker length to the benzyl substituent the same (compound **22b** vs compound **41d**) resulted in a 20-fold loss of potency in the RWB assay. Compound **57**, with a three-carbon linker to the sulfonamide, showed only a 2-fold loss in the same assay. The large loss of potency observed upon N-methylation of the sulfonamide (compound **43**), reversal of the sulfonamide (compound **50**), and replacement of the sulfonamide with the analogous sulfone (compound **59**) or amine (compound **39**) illustrates the significance of the sulfonamide functionality for inhibition of cPLA₂ α .

^{*a*} Reagents: (a) CDI, NH₄OH, THF; (b) cyanuric fluoride, PYR, CH₂Cl₂; (c) NaBH₄, MeOH.

The sulfonamide was then held constant while other portions of the inhibitor were systematically varied. As shown in Table 3, neither an amide (compound **60**) nor an alcohol (compound **61**) were tolerated as replacements for the benzoic acid.

^{*a*} Reagents: (a) Ph₂CHBr, DIEA, TBAI, DMF; (b) 3-butyn-1-ol, PdCl₂(PPh₃)₂, CuI, Et₃N; (c) CuI, DMF; (d) TBDPSCl, Imid, CH₂Cl₂; (e) (COCl)₂, CH₂Cl₂, MeOH, Et₃N; (f) BH₃·Me₂S, THF; (g) **68a** or **68b**, DIAD, PPh₃, THF; (h) TBAF, THF; (i) MsCl, Et₃N, CH₂Cl₂; (j) NaN₃, DMF; (k) H₂, Pd/C, MeOH; (l) BnSO₂Cl, sat. NaHCO₃, CH₂Cl₂; (m) 1 N NaOH, THF, MeOH.

Compounds **75a** and **75b** illustrate the strong preference for a *p*-carboxylic acid over ortho and meta analogues.

The effect of changing the indole C5 and C6 substituents is shown in Table 4. The 6-chloro- and 5-nitro-substituted analogues (compounds **105** and **92**, respectively) were equipotent or nearly equipotent to the 5-chloro lead **41d**, while the 5-morpholino derivative **44** showed a modest loss in activity. Thus a fairly dramatic change in steric bulk results in a relatively small change in potency. In compound **93**, the C2 and C3 substituents are reversed compared to compound **92**, resulting in a dramatic decrease in potency. This analogue demonstrates that not only is each part of the pharmacophore essential, but also that the relative position of each of these pharmacophores is required for activity.

The benzhydryl group has a number of potential liabilities: it contributes to the high molecular weight and lipophilicity of these analogues and may be a site for oxidative metabolism. Table 5 reveals that replacement of the benzhydryl substituent with benzyl (compound **41c**) has a deleterious effect on the potency, and that further substitution of the *N*-benzyl substituent to partially restore the lipophilicity (compound **117b**) results in a further loss of potency. The isopropyl group (compound **117a**) was also not tolerated.

To summarize the SAR of our indole inhibitors of cPLA₂ α , we have defined a three-part pharmacophore, in which the *N*-benzhydryl group, C2 extended sulfonamide, and C3 benzoic acid moiety all are required for potent cPLA₂ α inhibition as determined by the GLU micelle assay (an isolated enzyme assay using purified human cPLA₂ α) and a whole blood assay in

which pooled rat blood is stimulated with calcium ionophore. Sulfonamide **41d** is one of the more potent compounds in the two primary assays.

Pharmacokinetics. We then examined the pharmacokinetics of compound **41d** in rats at 2 mg/kg iv and observed a high plasma clearance of 69 mL/min/kg. This clearance is similar to that of compound **8** (44 mL/min/kg), a lead compound with 15-fold less potency in the RWB assay. The oral bioavailability of compound **41d** when dosed at 5 mg/kg is 12%.

In an effort to make analogues with reduced clearance, substitution on the sulfonamide moiety was explored and compounds **118–123** were prepared using the same route used for the preparation of compound **41d**. As shown in Table 6, addition of chlorine substituents to various positions of the phenylmethane moiety led to analogues in which potency was maintained in both the GLU micelle and rat whole blood assays. Three of these analogues (**121, 122, and 123**) displayed significantly reduced iv clearance in rat versus the unsubstituted compound (**41d**). Oral bioavailability was determined for the three analogues, and based on data obtained with an oral dose of 5 mg/kg in a standard MC/Tween formulation, compound **123** offered significantly higher oral bioavailability (29%) than **121**(1.5%) and **122** (3%). Because of its potency and superior oral exposure, compound **123** was selected for further study.

However, the oral bioavailability of **123** decreased by approximately 4-fold to 8% when dosed at 20 mg/kg in MC/ Tween formulation. A similar decrease in bioavailability with increasing oral dose was observed with compound **41d**. Clearly, a scalable formulation was required for the evaluation of the

Scheme 9^a

^{*a*} Reagents: (a) methyl 4-hydroxybenzoate, DEAD, Ph₃P; (b) TBAF; (c) ICl, concd HCl (d) Ph₂CHBr, DIEA; (e) **78**, LiCl, KOAc, Pd(OAc)₂; (f) MsCl, Et₃N; (g) NaN₃, DMSO; (h) Ph₃P, H₂O; (i) BnSO₂Cl, sat. NaHCO₃, CH₂Cl₂; (j) 1N NaOH, THF, MeOH.

oral efficacy of lead compound **123** in animal models. Several formulations were examined for **123**, and a lipid-based formulation composed of 55.5% Phosal 53 medium chain triglyceride (MCT), 5.6% Tween 80, 16.7% Labrasol, and 22.2% propylene carbonate offered consistent oral exposures when compound **123** was dissolved at 37.5 mg compound per mL vehicle, diluted with water where necessary and dosed at 4 mL/kg to give doses ranging from 5 to 150 mg/kg (Table 6).

Compound **123** was analyzed in secondary assays to determine additional information related to its binding to $cPLA_2\alpha$, its selectivity for $cPLA_2\alpha$, and its inhibitory effect on downstream inflammatory mediators in a human whole blood assay.

Isothermal Calorimetry Data. Since cPLA₂ α acts at the membrane interface, it is theoretically possible that compound **123** is disrupting the membrane interface. However, this is highly unlikely since there are >7000 molecules of detergent or lipid (Triton X-100 and DTPC) for every molecule of **123** at the IC₅₀ in the GLU micelle assay. Nevertheless, the affinity and stoichiometry of compound **123** for human cPLA₂ α were determined using isothermal calorimetry at 30 °C using buffer conditions similar to that of the GLU micelle assay. An exothermic reaction was observed. The binding isotherm displayed a good fit (CHI² = 12011.4) with a single site model (N = 0.9988), indicating that one molecule of compound **123**

binds to one molecule of cPLA₂ α . The K_d was 139 nM, in agreement with that IC₅₀ seen in the GLU micelle assay (150 nM). Furthermore, no binding of compound **123** was observed when the active site of cPLA₂ α was covalently modified by methyl arachindonyl fluorophosphonate (MAFP) prior to the titration experiment. Thus compound **123** inhibits cPLA₂ α through direct binding at or near the active site.

Selectivity Assays. To further examine the selectivity of compound 123, its inhibition of PLA₂ isoforms was determined using PAPC (1-palmitoyl-2-arachidonyl-sn-glycero-3-phosphocholine) liposomes to assess activity against the β and γ isoforms which are \sim 35% identical in the catalytic domain, and PAPE (1-palmitoyl-2-arachidonyl-sn-glycero-3-phosphoethanolamine) liposome assays to monitor inhibition of type II secreted PLA₂ (sPLA₂). Compound 123 inhibited cPLA₂ α in the PAPC liposome assay at 80% at a concentration of 37 nM. In contrast, compound **123** displayed no inhibition of cPLA₂ β or cPLA₂ γ at 1 μ M in the PAPC assay. Compound **123** inhibited cPLA₂ α in the PAPE liposome assay at 73% at a concentration of 37 nM, while it inhibited sPLA₂ at 16% @ 1 μ M. Additional isoforms of cPLA₂ that are most closely related to cPLA₂ β have been identified in the last year.52 We expect that the lack of activity seen against cPLA₂ β , which is the most closely conserved, will also be observed for the new isoforms.

Scheme 10^a

^{*a*} Reagents: (a) TFA, H₂O, CH₂Cl₂; (b) EtOK, EtOH, EtO₂CCO₂Et, Et₂O; (c) Fe, AcOH, EtOH; (d) LiAlH₄, THF; (e) MnO₂, THF; (f) NaH, Ph₂CHBr, TBAI, DMF; (g) NH₄OAc, MeNO₂; (h) LAH, THF; (i) BnSO₂Cl, sat. NaHCO₃, CH₂Cl₂; (j) acetal **94**, Et₃SiH, TFA, CH₂Cl₂; (k) 1 N NaOH, THF, MeOH.

MC-9 Assay Data. The MC-9 assay is a murine mast cell that can be activated via cross-linking of the IgE receptor with a defined antigen to initiate degranulation and production of both prostaglandins and leukotrienes. The cell line is also useful because exogenous arachidonic acid can be added to initiate production of prostaglandin synthesis, thus by passing cPLA₂ α . In this cell assay, a cPLA₂ α inhibitor should block both prostaglandin and leukotriene production upon IgE stimulation but be inactive when exogenous arachidonic acid is added. Compound 123 inhibited the production of prostaglandins (PGF₂ α) and leukotrienes (LTB₄ and LTC₄/D₄/E₄) with comparable IC₅₀s of 20–30 nM. In contrast, when cPLA₂ α inhibition was bypassed by the addition of exogenous arachidonic acid, the inhibition of PGF₂ α was less than 50% at 1 μ M, which indicates that compound 123 is indeed inhibiting cPLA₂ α to give balanced inhibition of both prostaglandins and leukotrienes and not a downstream target such as COX. Consistent with the MC-9 data, compound 123 was inactive against COX-1 and COX-2 at 20 μ M, which is nearly 100 times the IC₅₀ in the MC-9 cells.

Human Whole Blood Data. Stimulation of human whole blood with calcium ionophore, A23187, results in the production of leukotrienes and multiple COX-1 derived prostaglandins. In this assay we routinely monitor by ELISA the products of the COX-1/thromboxane synthase pathway with TXB₂, the COX-1/PGE₂ synthase pathway with PGE₂, the COX-1 products with PGF₂ α , and the 5-LO/FLAP/LTA₄ hydrolase pathway with LTB₄. We have also determined the inhibition of PAF synthesis, which is generated from the lyso-phosphatidylcholine generated by cPLA₂ α . A cPLA₂ α inhibitor should block the production of all pathways. Compound **123** was tested in a human whole blood assay using blood from 15 different donors. At 0.3 μ M, **123** blocked the production of TXB₂, PGE₂, PGF₂ α , and LTB₄, as indicated in Table 7. Using similar methods, it was determined that the IC₅₀ of compound **123** for PAF based on four experiments with two donors was 0.3 μ M. Compound **123** was also tested for its ability to inhibit 12- and 15-HETE, which are derived from arachidonic acid via the 12- and 15-lipoxy-genase pathways and the IC₅₀s were ~0.3 μ M. The activity of **123** in these assays is consistent with its behavior as a cPLA₂ α inhibitor in the GLU micelle and RWB assays and demonstrates that **123** effectively inhibited the production of PAF and all the arachidonate metabolites tested.

Compound **123** was then evaluated in two animal models of inflammation.

Rat Carrageenan Air Pouch Model. This acute model of inflammation is primarily driven by COX-2 and has been used previously to characterize COX-2 selective inhibitors.^{53,54} In the rat carrageenan air pouch model, carrageenan is injected into a subcutaneous air pouch on rats and the amount of PGE₂ present in the air pouch exudate is measured *ex vivo*. Compound **123** was orally efficacious in this model and displayed an ED₅₀ of 8 mg/kg, demonstrating that it can inhibit COX-2 derived PGE₂ formation *in vivo*.

Rat Carrageenan Paw Edema (CPE) Model. The CPE model is an acute inflammation model that is primarily driven by prostaglandins.^{55,56} It has been highly predictive of NSAID and COX-2 utility. Inhibitor **123** was orally efficacious at reducing carrageenan-induced paw swelling: from dose–response studies, it has been determined that the ED_{50} of **123** is 40 mg/kg.

Conclusion

Starting from 2-methyl indole 7, the introduction of sulfonamides on extended linkers at C2 resulted in inhibitors of cPLA₂ α with substantial improvements as measured by the GLU micelle and rat whole blood (RWB) assays. One of the more potent compounds was **41d**, which displayed an IC₅₀ of 0.11 μ M in the GLU micelle assay and an IC₅₀ of 0.12 μ M in the RWB

Scheme 11^a

^{*a*} Reagents: (a) Acetone, NaBH(OAc)₃, AcOH, CH₂Cl₂; (b) NaH, 3,4-dichlorobenzyl bromide, DMF; (c) 3-butyn-1-ol, PdCl₂(PPh₃)₂, CuI, Et₃N; (d) CuI, DMF; (e) TBDPSCl, Imid, DMF; (f) aldehyde **95**, Et₃SiH, TFA, CH₂Cl₂; (g) TBAF, THF; (h) MsCl, Et₃N, THF; (i) NaN₃, DMSO; (j) PPh₃, H₂O, THF; (k) BnSO₂Cl, sat. NaHCO₃, CH₂Cl₂; (l) 1 N NaOH, THF, MeOH.

assay. Because **41d** showed high clearance (69 mL/min/kg) in rat, chlorine substituents were added to the phenylmethane moiety, and potency was maintained. Analysis of the pharmacokinetics of these analogues led to the discovery of Ecopladib (compound 123), a compound with equivalent potency to 41d and significantly reduced clearance (14 mL/min/kg). Compound 123 binds directly to cPLA₂ α as measured by isothermal calorimetry and is selective without activity toward the closely related β and γ isoforms, and the unrelated type II sPLA₂. Compound 123 is active in cells and maintains potency in a human whole blood assay. In the latter, compound 123 inhibited PAF production and both prostaglandin and leukotriene pathways in a balanced manner indicative of $cPLA_2\alpha$ inhibition. Compound 123 was orally efficacious in the rat carrageenan air pouch (ED₅₀ 8 mg/kg) and rat carrageenan paw edema (ED₅₀ 40 mg/kg) models, which are both indicative of inhibition of COX-2 mediated prostaglandin production. On the basis of these and other data, compound 123 has advanced to Phase I clinical trials; the results of these studies will be reported in due course.

Experimental Section

General Procedures. All solvents and reagents were used as obtained. All reaction mixtures were stirred using a magnetic stir bar and reactions were conducted at room temperature unless otherwise noted. Solutions were dried with MgSO₄ unless otherwise

noted. Proton NMR spectra were recorded at 300 MHz on a Varian Gemini 2000 or on a 400 MHz Bruker AV-400 spectrometer using TMS (δ 0.0) as a reference. Combustion analyses were obtained using a Perkin-Elmer Series II 2400 CHNS/O analyzer. CHN analyses were carried out by Robertson-Microlit. Low-resolution mass spectra were obtained using a Micromass Platform Electrospray Ionization Quadrapole mass spectrometer. High-resolution mass spectra were obtained using a Bruker (Billerica, MA) APEXIII Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometer equipped with an actively shielded 7 T superconducting magnet (Magnex Scientific Ltd., UK) and an external Bruker APOLLO electrospray ionization (ESI) source. Flash chromatography was performed using EM Science 230-400 mesh silica gel or Biotage flash columns packed with KP-SIL 60 Angstrom silica gel. Thin-layer chromatography (TLC) was performed using EMD $250 \,\mu\text{m}$ prescored silica gel 60 F₂₅₄ plates. Preparative HPLC was run using a Waters Prep 4000 LC system or a Waters 2525 Binary Gradient system. Purity in two solvent systems (H2O-CH3CN and H₂O-MeOH) was determined using an Agilent 1100 HPLC instrument, and all final compounds were >95% pure (see Supporting Information for details).

General Procedure for Ester Hydrolysis. To a solution of the ester (1.0 mmol) in inhibitor free THF (20 mL) was added 1 N aq NaOH (3.0 mL, 3.0 mmol) and MeOH (10 mL). The mixture was heated at 50 °C until the ester starting material was consumed (TLC analysis in 50% EtOAc-hexanes). The reaction mixture was concentrated, and the residue was diluted with H₂O (10 mL) and

Table 1. Initial Exploration of C2 SAR

compd	R	GLU IC ₅₀ ^a (µM)	RWB IC ₅₀ ^b (µM)
7	CH ₃	2.7	7.0
14	CH ₂ OH	2.3	2.2
18	CH ₂ NH ₂	7.0	31% @ 10 µM
20	CH ₂ NHCO ₂ Bn	1.2	0.27°
22a	CH ₂ NHSO ₂ Bn	4.2	6.4
30	CH ₂ CH ₂ OH	5.5	8.0
33	CH ₂ CH ₂ NH ₂	31% @ 20 µM	28% @ 10 µM
35	CH ₂ CH ₂ NHCO ₂ Bn	1.6	1.1
37	CH ₂ CH ₂ NHCOBn	5.9	1.8
41a	CH ₂ CH ₂ NHSO ₂ Me	0.65	0.9
41b	CH ₂ CH ₂ NHSO ₂ Ph	3.0	1.0
41d	CH ₂ CH ₂ NHSO ₂ Bn	0.11	0.12
41e	CH2CH2NHSO2CH2CH2Ph	0.52	0.63

^{*a*} See Experimental Section for the GLU micelle assay protocol. ^{*b*} See Experimental Section for the rat whole blood (RWB) assay protocol. ^{*c*} Note that compound **20** is more active in RWB than expected from the GLU IC₅₀, but the IC₅₀ in a human whole blood assay was 1.7 μ M.

Table 2. Linker Exploration at C2

compd	Х	GLU IC ₅₀ (µM)	RWB IC ₅₀ (µM)
41d	CH ₂ CH ₂ NHSO ₂	0.11	0.12
22b	CH ₂ NHSO ₂ CH ₂	5.0	2.2
57	CH ₂ CH ₂ CH ₂ NHSO ₂	0.26	0.26
43	CH ₂ CH ₂ NMeSO ₂	2.5	4.0
50	CH ₂ CH ₂ SO ₂ NH	11	12% @ 1.25 μM ^a
59	CH ₂ CH ₂ CH ₂ SO ₂	3.0	2.5
39	CH ₂ CH ₂ NHCH ₂	4.0	2.5

^{*a*} The highest concentration tested was 1.25 μ M.

acidified to pH 1 using 1 N HCl. The resulting mixture was extracted with EtOAc (2×20 mL). The organic extracts were washed with H₂O (20 mL) and brine (20 mL), dried, and concentrated. The residue was lyophilized to afford the carboxylic acid.

General Procedure for Sulfonylation of Amines via Schotten– Baumann Reaction. To a solution of the amine (1.0 mmol) in CH₂-Cl₂ (10 mL) were added sulfonyl chloride (1.2 mmol) and sat. NaHCO₃ (10 mL). The resulting suspension was stirred until the amine was consumed (TLC analysis in 10% MeOH–CH₂Cl₂). The mixture was diluted with CH₂Cl₂ (20 mL), washed with H₂O (20 mL) and brine, dried, and concentrated. Purification of the crude product by flash chromatography (EtOAc–hexanes) afforded the sulfonamide.

Methyl 4-{2-[5-Chloro-1-(diphenylmethyl)-2-formyl-1H-indol-3-yl]ethoxy}benzoate (12b). To a solution of methyl indole **11**⁴² (0.923 g, 1.8 mmol) in CCl₄ (50 mL) were added NBS (0.710 g, 4.0 mmol) and benzoyl peroxide (0.010 g). The resulting mixture was heated to reflux for 2.5 h. The mixture was cooled to room Table 3. SAR of C3 Benzoic Acid

compd	R	GLU IC ₅₀ (µM)	RWB IC ₅₀ (µM)
41d	p-CO ₂ H	0.11	0.12
60	p-CONH ₂	6.7	5.0
61	p-CH ₂ OH	30	38% @ 2.5 µM
75a	m-CO ₂ H	16.5	10
75b	o-CO ₂ H	35% @ 200 µM	NA @ 10 μM

Table 4. Exploration of Indole Substitution

		55		
compd	R	GLU IC ₅₀ (µM)	RWB IC ₅₀ (µM)	
41d 105	5-Cl 6-Cl	0.11 0.16	0.12 0.16	
44	5-morpholino	0.60	0.24	
92 93	5-NO ₂	0.12 28	0.09 13% @ 10μM	

Table 5. Benzhydryl Replacements

compd	R ¹	R ²	GLU IC ₅₀ (µM)	RWB IC ₅₀ (µM)
41d	Ph	Ph	0.11	0.12
41c	Ph	H	5.0	10
117a	Me	Me	90	25% @ 10 μM
117b	3,4-dichloro-Ph	H	18	34% @ 10 μM

temperature, and the solvent was evaporated. To a solution of the crude dibromide in acetone (180 mL) were added Ag₂CO₃ (0.551 g, 2.0 mmol) and H₂O (18 mL), and the mixture was stirred overnight. The reaction mixture was diluted with H₂O (80 mL) and extracted with EtOAc (350 mL). The combined organic extracts were washed with brine, dried (Na₂SO₄), and evaporated. Purification by flash chromatography afforded formyl indole **12b** (0.750 g, 80%). ¹H NMR (300 MHz, CDCl₃) δ 3.56 (t, *J* = 6.5 Hz, 2 H), 3.88 (s, 3 H), 4.19–4.48 (m, 2 H), 6.67 (d, *J* = 9.1 Hz, 1 H), 6.84 (d, *J* = 8.8 Hz, 2 H), 6.96–7.49 (m, 10 H), 7.74 (d, *J* = 1.9 Hz, 1 H), 7.95 (d, *J* = 8.8 Hz, 2 H), 8.22 (s, 1 H), 10.21 (s, 1 H).

Methyl 4-{2-[1-Benzhydryl-5-chloro-2-(hydroxymethyl)-1*H*indol-3-yl]ethoxy}benzoate (13). To a solution of aldehyde 12b (6.09 g, 12 mmol) in THF (100 mL) and MeOH (100 mL) at 0 °C

0/ **F**

Table 6. Substitution of Phenylmethane Moiety

					rat %F	
compd R	R	GLU IC ₅₀ R (µM)	RWB IC ₅₀ (µM)	rat IV Cl 2 mg/kg (mL/min/kg)	MC/Tween formulation	Phosal formulation
41d	Н	0.11	0.12	69	12 (5 mg/kg) 3.9 (20 mg/kg)	-
118	2-Cl	0.052	0.053	>200	-	-
119	4-Cl	0.12	0.16	31	-	-
120	2,3-Cl	0.11	0.13	121	-	-
121	2,4-Cl	0.10	0.10	6.4	1.5 (5 mg/kg)	-
122	3,5-Cl	0.19	0.13	8.3	3.0 (5 mg/kg) 1.8 (20 mg/kg)	-
123	3,4-Cl	0.15	0.11	14	29 (5 mg/kg) 8 (20 mg/kg)	6.3 (5 mg/kg) 12 (25 mg/kg) 16 (100 mg/kg) 19 (150 mg/kg)

Table 7. Inhibition of Inflammatory Mediators in Human Whole Blood by **123** at 0.3 μ M^{*a*}

product	% inhib	std dev
TXB ₂	53	16
PGE_2	72	13
$PGF_2\alpha$	60	15
LTB_4	60	23

^a Compound 123 was tested using blood from 15 different donors.

was slowly added NaBH₄ (0.530 g, 14 mmol). The mixture was stirred at 0 °C for 1 h and at room temperature for 3 h. The mixture was concentrated partially, diluted with H₂O (400 mL), and extracted with EtOAc (3 × 200 mL). The organic phase was washed with H₂O and brine and dried (Na₂SO₄) to afford 6.1 g (~100%) of crude alcohol **13**, a pale yellow foam. Flash chromatography of 0.200 g of the crude product (20 \rightarrow 50% EtOAc-hexanes) afforded **13** (0.145 g, 73%), a white foam. ¹H NMR (400 MHz, CDCl₃) δ 1.92 (t, *J* = 6.2 Hz, 1 H), 3.28 (t, *J* = 6.1 Hz, 2 H), 3.88 (s, 3 H), 4.24 (t, *J* = 6.1 Hz, 2 H), 4.76 (d, *J* = 6.1 Hz, 2 H), 6.58 (d, *J* = 8.6 Hz, 1 H), 6.82–6.93 (m, 3 H), 7.10–7.16 (m, 5 H), 7.19 (s, 1 H), 7.28–7.35 (m, 5 H), 7.56 (d, *J* = 2.0 Hz, 1 H), 7.96 (d, *J* = 8.8 Hz, 2 H).

4-{2-[1-Benzhydryl-5-chloro-2-(hydroxymethyl)-1*H***-indol-3-yl]ethoxy}benzoic Acid (14).** Crude methyl ester **13** (0.14 g, 0.28 mmol) was hydrolyzed according to the general procedure for ester hydrolysis. Preparative reverse phase HPLC purification and lyophilization afforded **14** (0.070 g, 50%) as a white powder. ¹H NMR (400 MHz, DMSO-*d*₆) δ 3.23 (t, *J* = 6.9 Hz, 2 H), 4.22 (t, *J* = 7.1 Hz, 2 H), 4.63 (s, 2 H), 5.45 (s, 1 H), 6.57 (d, *J* = 8.8 Hz, 1 H), 6.84 (dd, *J* = 8.8, 2.3 Hz, 1 H), 6.96 (d, *J* = 8.8 Hz, 2 H), 7.05–7.17 (m, 4 H), 7.26–7.46 (m, 7 H), 7.69 (d, *J* = 2.0 Hz, 1 H), 7.85 (d, *J* = 8.8 Hz, 2 H); HRMS: calcd for [C₃₁H₂₆ClNO₄ + Na] 534.1442 found 534.1432.

Methyl 4-{2-[2-(Azidomethyl)-5-chloro-1-(diphenylmethyl)-1*H*-indol-3-yl]ethoxy}benzoate (16). To a solution of crude alcohol 13 (5.0 g, 9.5 mmol) in CH₂Cl₂ (200 mL) were added Et₃N (1.7 mL, 12 mmol) and MsCl (0.81 mL, 10 mmol). After 1.5 h, additional MsCl (0.20 mL, 2.5 mmol) was added. After 2 h, the mixture was evaporated. The crude mesylate 15 was dissolved in DMF (350 mL) and treated with NaN₃ (6.2 g, 95 mmol). The mixture was stirred overnight at 80 °C. It was then cooled to room temperature and poured into a mixture of sat. NH₄Cl (250 mL) and H₂O (250 mL). The mixture was extracted with EtOAc (1 L). The organic phase was washed with H₂O and brine, dried, and concentrated. Flash chromatography (10% EtOAc-hexanes) afforded azide **16** (3.95 g, 75%) as a pale yellow foam. ¹H NMR (400 MHz, CDCl₃) δ 3.29 (t, J = 6.7 Hz, 2 H), 3.88 (s, 3 H), 4.22 (t, J = 6.8 Hz, 2 H), 4.50 (s, 2 H), 6.49 (d, J = 8.8 Hz, 1 H), 6.82–6.94 (m, 3 H), 7.01 (s, 1 H), 7.07–7.15 (m, 4 H), 7.28–7.37 (m, 6 H), 7.61 (d, J = 2.0 Hz, 1 H), 7.96 (d, J = 9.1 Hz, 2 H).

Methyl 4-{2-[2-(Aminomethyl)-1-benzhydryl-5-chloro-1*H*-indol-3-yl]ethoxy}benzoate (17). Azide 16 (0.600 g, 1.1 mmol) and Ph₃P (0.570 g, 2.2 mmol) were stirred in THF (50 mL) for 5 h. H₂O (6 mL) was added, and the mixture was stirred at 60 °C overnight. The mixture was concentrated, diluted with H₂O (50 mL), and extracted with CH₂Cl₂ (150 mL). The organic phase was washed with H₂O and brine, dried, and concentrated. Flash chromatography (1 \rightarrow 5% MeOH–CH₂Cl₂) afforded 17 (0.50 g, 87%) as a white foam. ¹H NMR (400 MHz, CDCl₃) δ 3.24 (t, *J* = 6.4 Hz, 2 H), 3.88 (s, 3 H), 3.98 (s, 2 H), 4.22 (t, *J* = 6.4 Hz, 2 H), 6.57 (d, *J* = 8.8 Hz, 1 H), 6.79–6.91 (m, 3 H), 7.13 (dd, *J* = 6.7, 2.4 Hz, 4 H), 7.27–7.38 (m, 6 H), 7.54 (d, *J* = 2.0 Hz, 1 H), 7.95 (d, *J* = 8.8 Hz, 2 H).

4-{2-[2-(Aminomethyl)-1-benzhydryl-5-chloro-1*H***-indol-3-yl]ethoxy}benzoic Acid (18). Methyl ester 17 (0.060 g, 0.11 mmol) was hydrolyzed according to the general procedure to afford 0.058 g (100%) of carboxylic acid 18, a beige solid. ¹H NMR (300 MHz, CD₃OD) \delta 1.33 (t, J = 5.9 Hz, 2 H), 2.01 (s, 2 H), 2.32 (t, J = 5.9 Hz, 2 H), 4.67 (d, J = 8.8 Hz, 1 H), 4.81–4.95 (m, 3 H), 5.13– 5.25 (m, 4 H), 5.38 (t, J = 6.2 Hz, 7 H), 5.70 (s, 1 H), 5.96 (d, J = 7.7 Hz, 2 H).**

Methyl 4-{2-[1-Benzhydryl-2-({[(benzyloxy)carbonyl]amino}methyl)-5-chloro-1*H*-indo l-3-yl]ethoxy}benzoate (19). Amine 17 (0.15 g, 0.28 mmol) was stirred with benzyl chloroformate (0.041 mL, 0.28 mmol) and Et₃N (0.10 mL, 0.71 mmol) in CH₂Cl₂ (5 mL) at 0 °C for 3 h. The mixture was washed with H₂O (10 mL) and extracted with CH₂Cl₂ (20 mL). The organic extracts were washed with H₂O and brine, dried (Na₂SO₄), and concentrated. Flash chromatography (10 \rightarrow 20% EtOAc-hexanes) afforded carbamate 19 (0.097 g, 52%) as a white foam. ¹H NMR (400 MHz, CDCl₃) δ 3.25 (s, 2 H), 3.88 (s, 3 H), 4.23 (t, *J* = 5.8 Hz, 2 H), 4.62 (s, 2 H), 5.02-5.05 (m, 3 H), 6.53 (d, *J* = 9.1 Hz, 1 H), 6.78-6.95 (m, 3 H), 7.08 (s, 4 H), 7.19-7.35 (m, 11 H), 7.37 (d, *J* = 4.5 Hz, 1 H), 7.53 (d, *J* = 1.8 Hz, 1 H), 7.86 (d, *J* = 8.8 Hz, 2 H). **4-{2-[1-Benzhydryl-2-({[(benzyloxy)carbonyl]amino}methyl)-5-chloro-1***H***-i ndol-3-yl]ethoxy}benzoic Acid (20).** Methyl ester **19** (0.097 g, 0.15 mmol) was hydrolyzed according to the general procedure. Flash chromatography (20 → 50% EtOAc-hexanes) of the crude product and lyophilization afforded carboxylic acid **20** (0.021 g, 22%) as a white solid. ¹H NMR (400 MHz, DMSO-*d*₆) δ 3.28 (t, *J* = 7.1 Hz, 2 H), 4.24 (t, *J* = 6.8 Hz, 2 H), 4.47 (d, *J* = 5.3 Hz, 2 H), 4.98 (s, 2 H), 6.49 (d, *J* = 8.8 Hz, 1 H), 6.84 (dd, *J* = 9.0, 2.1 Hz, 1 H), 6.96 (d, *J* = 8.8 Hz, 2 H), 7.06 (d, *J* = 7.1 Hz, 4 H), 7.16 (s, 1 H), 7.21−7.30 (m, 5 H), 7.30−7.44 (m, 6 H), 7.69 (d, *J* = 2.3 Hz, 1 H), 7.84 (d, *J* = 8.8 Hz, 2 H), 7.89− 8.03 (m, 1 H); HRMS: calcd for [C₃₉H₃₃ClN₂O₅ + H] 645.2151 found 645.2143; Anal. C₃₉H₃₃ClN₂O₅: C, H, N.

Methyl 4-[2-(1-Benzhydryl-2-{[[benzylsulfonyl]amino]methyl}-5-chloro-1*H*-indol-3-yl)ethoxy]benzoate (21a). Amine 17 (0.19 g, 0.36 mmol) underwent sulfonylation using the general Schotten− Baumann procedure with α-toluenesulfonyl chloride (0.082 g, 0.43 mmol) for 1.5 h. Flash chromatography (20 → 40% EtOAc− hexanes) of the product afforded 21a (0.15 g, 61%) as a white foam. ¹H NMR (400 MHz, CDCl₃) δ 3.15 (t, *J* = 5.9 Hz, 2 H), 3.88 (s, 3 H), 4.13−4.19 (m, 2 H), 4.24 (s, 2 H), 4.29 (d, *J* = 6.1 Hz, 2 H), 4.54 (t, *J* = 5.1 Hz, 1 H), 6.52 (d, *J* = 8.8 Hz, 1 H), 6.68 (d, *J* = 8.8 Hz, 2 H), 6.86 (dd, *J* = 9.0, 2.1 Hz, 1 H), 7.04−7.11 (m, 4 H), 7.22−7.39 (m, 12 H), 7.51 (d, *J* = 1.8 Hz, 1 H), 7.91 (d, *J* = 8.8 Hz, 2 H); HRMS: calcd for [C₃₈H₃₂ClN₂O₅S + H] 665.2092 found 665.1865.

Methyl 4-{2-[1-Benzhydryl-5-chloro-2-({[(2-phenylethyl)sulfonyl]amino}methyl)-1*H*-in dol-3-yl]ethoxy}benzoate (21b). Amine 17 (0.22 g, 0.40 mmol) underwent sulfonylation using the general Schotten–Baumann procedure with 2-phenylethanesulfonyl chloride^{57,58} (0.14 g, 0.68 mmol) for 1 h. Flash chromatography (20 \rightarrow 30% EtOAc–hexanes) of the crude sulfonamide afforded 21b (0.152 g, 52%) as a white foam. ¹H NMR (400 MHz, CDCl₃) δ 2.92–3.09 (m, 2 H), 3.13–3.28 (m, 4 H), 3.84–3.92 (m, 3 H), 4.23 (t, *J* = 5.9 Hz, 2 H), 4.30–4.41 (m, 3 H), 6.55 (d, *J* = 8.6 Hz, 1 H), 6.84–6.96 (m, 3 H), 7.04–7.11 (m, 5 H), 7.13 (s, 1 H), 7.21–7.34 (m, 10 H), 7.54 (d, *J* = 1.8 Hz, 1 H), 7.97 (d, *J* = 9.1 Hz, 2 H).

4-[2-(1-Benzhydryl-2-{[[benzylsulfonyl]amino]methyl}-5-chloro-1H-indol-3 -yl)ethoxy]benzoic Acid (22a). Methyl ester **21a** (0.15 g, 0.22 mmol) was hydrolyzed according to the general procedure. The crude carboxylic acid was purified by preparative reverse-phase HPLC and lyophilized to afford **22a** (0.049 g, 39%) as a white solid. ¹H NMR (400 MHz, DMSO-*d*₆) δ 3.23 (t, *J* = 7.2 Hz, 2 H), 4.20 (t, *J* = 7.3 Hz, 2 H), 4.28 (d, *J* = 5.6 Hz, 2 H), 4.44 (s, 2 H), 6.47 (d, *J* = 8.8 Hz, 1 H), 6.86 (dd, *J* = 9.0, 2.1 Hz, 1 H), 6.97 (d, *J* = 9.1 Hz, 2 H), 7.04–7.16 (m, 4 H), 7.23 (s, 1 H), 7.25–7.50 (m, 11 H), 7.72 (d, *J* = 2.3 Hz, 1 H), 7.87 (d, *J* = 9.1 Hz, 2 H), 7.91 (t, *J* = 5.6 Hz, 1 H); HRMS: calcd for [C₃₈H₃₃ClN₂O₅S + H] 665.18715 found 665.18648.

4-{2-[1-Benzhydryl-5-chloro-2-({[(2-phenylethyl)sulfonyl]-amino}methyl)-1 *H*-indol-3-yl]ethoxy}benzoic Acid (22b). Methyl ester **21b** (0.13 g, 0.14 mmol) was hydrolyzed according to the general procedure to afford **22b** (0.11 g, 89%) as a white powder. ¹H NMR (400 MHz, DMSO-*d*₆) δ 2.88–3.05 (m, 2 H), 3.20–3.45 (m, 4 H), 4.23 (t, *J* = 7.2 Hz, 2 H), 4.38 (d, *J* = 5.6 Hz, 2 H), 6.50 (d, *J* = 9.1 Hz, 1 H), 6.87 (dd, *J* = 9.0, 2.1 Hz, 1 H), 6.97 (d, *J* = 8.8 Hz, 2 H), 7.11 (dd, *J* = 7.6, 1.8 Hz, 4 H), 7.15–7.47 (m, 12 H), 7.73 (d, *J* = 2.0 Hz, 1 H), 7.84 (d, *J* = 9.1 Hz, 2 H), 7.89 (t, *J* = 6.2 Hz, 1 H); HRMS: calcd for [C₄₀H₃₇ClN₂O₅S + H] 679.2028 found 679.2028.

2-(5-Chloro-1*H***-indol-3-yl)ethanol (24).** To a solution of 5-chloroindole (23) (30 g, 199 mmol) in Et₂O (600 mL) at 0 °C was added (COCl)₂ (19 mL, 219 mmol). The resulting yellow slurry was stirred at 0 °C for 1.5 h and at room temperature for 1.5 h. The reaction was cooled to 0 °C, and MeOH (75 mL, 1.9 mol) and Et₃N (150 mL, 1.1 mol) were added. The mixture was stirred at 0 °C for 1 h and then warmed to room temperature over 4 h. The reaction mixture was cooled to 0 °C, and the precipitate was filtered and washed with H₂O, followed by cold Et₂O–EtOAc (2:1), and dried to afford the oxalic ester, a white solid (44.2 g, 94%). To a solution

of the ester in THF (1 L) at 0 °C was added LiAlH₄ (1.0 L of a 1 M soln in Et₂O, 1.0 mol) via cannula. The reaction mixture was allowed to warm to room temperature over 2 h and then heated to 70 °C for 3 h. The mixture was cooled to 0 °C and quenched by the successive addition of H₂O (38 mL), 15% aq NaOH (38 mL) and H₂O (110 mL) to form a precipitate which was filtered through Celite. The filtrate was concentrated, extracted with EtOAc, washed with brine, dried, filtered, and concentrated to afford the pure alcohol **24** (31.3 g, 86%). ¹H NMR (300 MHz, DMSO-*d*₆): δ 2.76 – 2.86 (m, 2 H), 3.59 – 3.68 (m, 2 H), 4.60 – 4.67 (m, 1 H), 7.04 (d, *J* = 2.0 Hz, 1 H), 7.22 (s, 1 H), 7.35 (d, *J* = 2.0 Hz, 1 H), 7.78 (s, 1 H), 11.02 (s, 1 H).

Methyl 4-[2-(5-Chloro-1H-indol-3-yl)ethoxy]benzoate (26). To a solution of alcohol 24 (1.0 g, 5.1 mmol) in CH₂Cl₂ at 0 °C were added Et₃N (0.86 mL, 6.1 mmol) and MsCl (0.42 mL, 5.4 mmol). After 20 min, the mixture was diluted with EtOAc, washed with brine, dried, filtered, and concentrated. The residue was azeotroped twice with benzene to afford the mesylate 25, which was used in the next step without further purification. To a solution of methyl 4-hydroxybenzoate (1.0 g, 6.5 mmol) in DMF (20 mL) at 0 °C was added NaH (60% dispersion in mineral oil, 0.25 g, 6.5 mmol). The mixture was warmed to room temperature over 20 min, and then a solution of mesylate 25 (\sim 5.1 mmol) was added in DMF (5 mL). The reaction mixture was stirred at 40 °C overnight, diluted with EtOAc, washed with brine, dried, filtered, and concentrated. Flash chromatograghy (20% EtOAc-hexanes) afforded methyl benzoate **26** (0.62 g, 37%). ¹H NMR (300 MHz, DMSO-d₆) δ 3.15 (t, J = 6.9 Hz, 2 H), 3.8 (s, 3 H), 4.27 (t, J = 6.9 Hz, 2 H), 7.00 - 7.10 (m, 3 H), 7.20 - 7.36 (m, 2 H), 7.65 (s, 1 H), 7.91 (d, J = 7.5 Hz, 2 H,), 11.15 (s, 1 H).

Methyl 4-{2-[2-Bromo-5-chloro-1-(diphenylmethyl)-1H-indol-3-yl]ethoxy}benzoate (28). To a solution of indole 26 (0.60 g, 1.8 mmol) in CCl₄ (10 mL) was added NBS (0.34 g, 1.9 mmol). The solution was heated at 77 °C for 2.5 h, cooled to room temperature, diluted with EtOAc, and washed with sat. NaHCO₃ and brine. The organic layer was dried, filtered, and concentrated to afford bromide 27, which was carried onto the next step directly. To a solution of bromide 27 in DMF (8 mL) at 0 °C was added NaH (60% dispersion in mineral oil, 0.073 g, 1.8 mmol). The mixture was allowed to warm to room temperature over 15 min, and benzyhydryl bromide was added (0.54 g, 2.16 mmol). After 2 h, EtOAc was added, and the mixture was washed with brine, dried, filtered, and purified by flash chromatography (50% EtOAc-hexanes) to afford the title compound **28** (0.70 g, 69%). ¹H NMR (300 MHz, DMSO- d_6) δ 3.24 (t, J = 6.7 Hz, 2 H), 3.81 (s, 3 H), 4.27 (t, J = 6.7 Hz, 2 H,), 6.65 (d, J = 8.9 Hz, 1 H), 6.95 (dd, J = 8.9, 1 H), 7.01 (d, J = 8.9)Hz, 2 H), 7.05 -7.15 (m, 3 H), 7.29 (s, 1 H), 7.1 - 7.41 (m, 7 H), 7.79 (d, J = 2.1 Hz, 1 H), 7.85 (d, J = 8.8 Hz, 2 H).

4-{2-[5-Chloro-1-(diphenylmethyl)-2-(2-hydroxyethyl)-1H-indol-3-yl]ethox y}benzoic Acid (30). To a solution of the ester 28 (0.40 g, 7.0 mmol) in THF (10 mL) was added NaOH (5 M, 7.0 mL, 35 mmol) followed by MeOH (~7 mL) to afford a homogeneous solution. The mixture was stirred overnight, neutralized with NaH₂PO₃ pH 3 buffer, extracted with EtOAc, washed with brine, dried, filtered, and concentrated to afford carboxylic acid 29 as an off-white solid (0.38 g, 95%). This material was used without further purification. To a solution of acid 29 (0.20 g, 0.36 mmol) in THF (2 mL) was added NaH (60% dispersion in mineral oil, 0.040 g, 1.0 mmol). The mixture was stirred 15 min, cooled to -95 °C, and tert-BuLi (0.87 mL, 0.84 M in pentane, 0.74 mmol) was added dropwise. After 5 min, ethylene oxide was bubbled through the reaction mixture. The reaction mixture was allowed to warm to room temperature, quenched with NaH₂PO₃ pH 3 buffer, extracted with EtOAc, washed with brine, dried, and concentrated. Flash chromatography afforded the title compound 30 (0.06 g, 32%) as a white solid. ¹H NMR (300 MHz, DMSO- d_6): δ 2.86 - 2.98 (m, 2 H), 3.01 - 3.11 (m, 2 H), 4.31 (t, J = 6.2 Hz, 2H), 3.18 (t, J =6.4 Hz, 2 H), 4.52 - 4.61 (m, 1 H), 6.89 (dd, J = 1.5 Hz, 1H,), 6.47 (d, J = 8.9 Hz, 1 H), 7.00 (d, J = 8.9 Hz, 2 H), 7.23 (s, 1 H), 7.26 - 7.42 (m, 10 H), 7.75 (d, J = 1.6 Hz, H), 7.90 (d, J = 8.5 Hz, 2 H); HRMS: calcd for [C₃₂H₂₈ClNO₄ +H] 526.1780 found 526.1772.

Methyl 4-(2-{5-Chloro-1-(diphenylmethyl)-2-[(E)-2-nitrovinyl]-1H-indol-3-yl}ethoxy)benzoate (31b). Aldehyde 12b (15 g, 28.6 mmol), NH₄OAc (8.8 g, 114 mmol), and MeNO₂ (150 mL) were heated to reflux for 4 h. The mixture was cooled to room temperature and partitioned between brine (500 mL) and EtOAc (400 mL). The aqueous phase was separated and extracted with EtOAc (400 mL). The organic extracts were washed with brine, dried, and concentrated until the product began to crystallize. Cooling and filtration yielded vinyl nitro compound **31b** (12.4 g, 76%). Concentration of the mother liquors and flash column chromatography of the residue (eluting with 1% EtOAc-toluene) afforded additional **31b** (3.7 g, 23%). ¹H NMR (400 MHz, CDCl₃) δ 3.37 (t, J = 6.0 Hz, 2 H), 3.88 (s, 3 H), 4.33 (t, J = 5.9 Hz, 2 H), 6.82 (t, J = 9.3 Hz, 3 H), 6.99–7.06 (m, 2 H), 7.06–7.18 (m, 4 H), 7.29-7.40 (m, 6 H), 7.58 (d, J = 13.5 Hz, 1 H), 7.66 (d, *J* = 1.6 Hz, 1 H), 7.96 (d, *J* = 9.1 Hz, 2 H), 8.02 (d, *J* = 13.7 Hz, 1 H).

Methyl 4-{2-[2-(2-Aminoethyl)-1-benzhydryl-5-chloro-1H-indol-3-vl]ethoxy}benzoate (32b). To a solution of vinyl nitro derivative 31b (12.4 g, 22 mmol) in THF (400 mL) was added concd HCl (53 mL, 1.8 mmol) and Zn(Hg) amalgam⁴⁵ freshly prepared from Zn dust (29 g, 440 mmol) and HgCl₂ (2.9 g, 6 mmol) in 5% aq HCl. Additional THF (100 mL) was used to rinse the sides of the reaction flask. The reaction was exothermic. After 1 h the solution phase became almost colorless. The reaction mixture was filtered through Celite, washing with THF (100 mL). The organic phase was treated with concd NH₄OH (50 mL) and partially concentrated on the rotary evaporator. The resulting mixture was diluted with concd NH₄OH (50 mL) and extracted with CH₂Cl₂ (500 mL). The organic extracts were washed with brine, dried, and concentrated. Flash chromatography $(1 \rightarrow 10\% \text{ MeOH}-\text{CH}_2\text{Cl}_2)$ afforded 32b (7.65 g, 65%) as a pale yellow foam. ¹H NMR (300 MHz, CDCl₃) δ 2.81 (t, J = 7.3 Hz, 2 H,) 2.98 (t, J = 7.4 Hz, 2 H), 3.25 (t, J = 7.1 Hz, 2 H), 3.88 (s, 3 H), 4.22 (t, J = 7.0 Hz, 2 H), 6.51 (d, J = 9.1 Hz, 1 H), 6.80 (dd, J = 8.9, 2.1 Hz, 1 H), 6.88 (d, J = 9.1 Hz, 2 H), 6.94 (s, 1 H), 7.03–7.18 (m, 4 H), 7.28– 7.38 (m, 6 H), 7.54 (d, J = 1.9 Hz, 1 H), 7.96 (d, J = 9.1 Hz, 2 H).

4-{2-[2-(2-Aminoethyl)-1-benzhydryl-5-chloro-1*H***-indol-3-yl]ethoxy}benzoic Acid (33).** Methyl ester **32b** (0.13 g, 0.24 mmol) was hydrolyzed according to the general procedure to afford carboxylic acid **33** (0.082 g, 61%) as a white powder. ¹H NMR (300 MHz, DMSO-*d*₆) δ 2.78 – 2.87 (m, 2 H), 3.18 – 3.27 (m, 2 H), 4.24 (t, *J* = 6.5 Hz, 2 H), 6.56 (d, *J* = 9.0 Hz, 1 H), 6.85 (dd, *J* = 9.0, 2.0 Hz, 1 H), 6.98 (d, *J* = 8.8 Hz, 2 H), 7.10–7.13 (m, 4 H), 7.18 (s, 1 H), 7.35–7.38 (m, 7 H), 7.74 (d, *J* = 2.0 Hz, 1 H), 7.85 (d, *J* = 8.8 Hz, 2 H); HRMS: calcd for[C₃₂H₂₉ClN₂O₃ + H] 525.1945 found, 525.1933.

Methyl 4-{2-[2-(2-{[[Benzyloxy)carbonyl]amino}ethyl)-5chloro-1-(diphenylmethyl)-1 *H*-indol-3-yl]ethoxy}benzoate (34). Amine 32b (0.10 g, 0.19 mmol) was stirred with benzyl chloroformate (0.026 mL, 0.19 mmol) and Et₃N (0.065 mL, 0.46 mmol) in CH₂Cl₂ (4 mL) at 0 °C for 1 h and at room temperature for 1 h. The mixture was washed with H₂O (10 mL) and extracted with CH₂Cl₂ (20 mL). The organic extracts were washed with H₂O and brine, dried (Na₂SO₄), and concentrated. Flash chromatography (10 \rightarrow 20% EtOAc-hexanes) afforded carbamate 34 (0.092 g, 74%) as a colorless oil. ¹H NMR (300 MHz, CDCl₃) δ 3.07 (t, *J* = 7.1 Hz, 2H), 3.18-3.27 (m, 4H), 3.90 (s, 3H), 4.20 (t, *J* = 6.9 Hz, 2H), 4.82 (t, *J* = 5.8 Hz, 1H), 5.04 (s, 2H), 6.49 (d, *J* = 9.0 Hz, 1H), 6.79-6.86 (m, 3H), 7.01 (s, 1H), 7.10-7.12 (m, 4H), 7.27-7.31 (m, 11H), 7.54 (d, *J* = 1.6 Hz, 1 H), 7.94 (d, *J* = 8.8 Hz, 2 H).

4-{2-[2-(2-{[(Benzyloxy)carbonyl]amino}ethyl)-5-chloro-1-(diphenylmethyl) -1*H*-indol-3-yl]ethoxy}benzoic Acid (35). Methyl ester 34 (0.092 g, 0.14 mmol) was hydrolyzed according to the general procedure and concentrated to afford carboxylic acid 35 (0.080 g, 89%), a white foam. ¹H NMR (300 MHz, DMSO- d_6) δ 2.98 (t, J = 6.9 Hz, 2 H), 3.07–3.29 (m, 4 H), 4.20 (t, J = 6.5 Hz, 2 H), 4.99 (s, 2 H), 6.44 (d, J = 9.1 Hz, 1 H), 6.80 (dd, J = 8.9, 2.0 Hz, 1 H), 6.97 (d, J = 8.8 Hz, 2 H), 7.07–7.14 (m, 5 H), 7.19 (s, 1 H), 7.25–7.43 (m, 10 H), 7.58 (t, J = 5.6 Hz, 1 H), 7.65 (d, J = 2.0 Hz, 1 H), 7.84 (d, J = 8.8 Hz, 2 H); HRMS: calcd for [C₄₀H₃₄ClN₂O₅ +H] 659.2307 found 659.2303.

Methyl 4-[2-(1-Benzhydryl-2-{2-[(benzylsulfonyl)(methyl)amino]ethyl}-5-chloro-1*H*-in dol-3-yl)ethoxy]benzoate (36). To a CH₂Cl₂ (4 mL) solution of amine 32b (0.100 g, 0.19 mmol) were added sat. NaHCO₃ (2 mL) and phenylacetyl chloride (0.025 mL, 0.19 mmol). The resulting biphasic mixture was stirred at room temperature for 1 h, diluted with sat. NaHCO₃ (15 mL), and extracted with CH₂Cl₂ (20 mL). The organic phase was washed with H₂O and brine, dried, and concentrated. Flash chromatography (20 \rightarrow 40% EtOAc-hexanes) afforded amide 36 (0.099 g, 96%) as a white foam. ¹H NMR (300 MHz, CDCl₃) δ 2.87–3.30 (m, 6 H), 3.48 (s, 2 H), 3.88 (s, 3 H), 4.16 (t, *J* = 6.7 Hz, 2 H), 5.43 (t, *J* = 5.8 Hz, 1 H), 6.51 (d, *J* = 8.8 Hz, 1 H), 6.71–6.91 (m, 3 H), 6.93–7.18 (m, 7 H), 7.26 (dd, *J* = 4.4, 1.9 Hz, 9 H), 7.52 (d, *J* = 1.9 Hz, 1 H), 7.94 (d, *J* = 9.1 Hz, 2 H).

4-[2-(1-Benzhydryl-2-{2-[(benzylsulfonyl)(methyl)amino]ethyl}-5-chloro-1 *H*-indol-3-yl)ethoxy]benzoic Acid (37). Methyl ester **36** (0.099 g, 0.15 mmol) was hydrolyzed according to the general procedure and concentrated to afford carboxylic acid **37** (0.083 g, 86%) as a white foam. ¹H NMR (300 MHz, DMSO-*d₆*) δ 2.86–3.05 (m, 2 H) 3.07–3.32 (m, 4 H) 3.40 (s, 2 H) 4.21 (t, *J* = 6.6 Hz, 2 H) 6.47 (d, *J* = 8.8 Hz, 1 H) 6.80 (dd, *J* = 8.7, 1.8 Hz, 1 H) 6.98 (d, *J* = 8.8 Hz, 2 H) 7.03–7.15 (m, 4 H) 7.16–7.47 (m, 12 H) 7.65 (d, *J* = 2.2 Hz, 1 H) 7.85 (d, *J* = 8.8 Hz, 2 H) 8.31 (t, *J* = 5.6 Hz, 1 H); HRMS: calcd for [C₄₀H₃₅ClN₂O₄ + H] 643.2358 found 643.2347.

Methyl 4-[2-(1-Benzhydryl-5-chloro-2-{2-[(2-phenylethyl)amino]ethyl}-1*H*-indol-3-yl)ethoxy]benzoate (38). A solution of amine 32b (0.150 g, 0.28 mmol) in 1,2-dichloroethane (2 mL) was stirred with phenylacetaldehyde (0.052 mL, 0.36 mmol) for 30 min. NaBH(OAc)₃ (0.095 g, 0.45 mmol) was added in one portion, and the mixture was stirred for 1 h, poured into sat. NaHCO₃ (20 mL), and extracted with EtOAc (45 mL). The organic extracts were washed with H₂O and brine, dried, and concentrated. Flash chromatography (1 \rightarrow 5% MeOH–CH₂Cl₂) afforded amine 38 (0.049 g, 27%) as a colorless oil. ¹H NMR (300 MHz, CDCl₃) δ 2.57–2.79 (m, 6 H), 2.99 (t, *J* = 7.4 Hz, 2 H), 3.22 (t, *J* = 7.0 Hz, 2 H), 3.88 (s, 3 H), 4.13–4.25 (m, *J* = 7.0, 7.0 Hz, 2 H), 6.50 (d, *J* = 9.1 Hz, 1 H), 6.79 (dd, *J* = 8.9, 2.1 Hz, 1 H), 6.87 (d, *J* = 9.1 Hz, 2 H), 6.93 (s, 1 H), 7.01–7.13 (m, 6 H), 7.15–7.36 (m, 9 H), 7.54 (d, *J* = 1.9 Hz, 1 H), 7.96 (d, *J* = 9.1 Hz, 2 H).

4-[2-(1-Benzhydryl-5-chloro-2-{2-[(2-phenylethyl)amino]ethyl}-1H-indol-3-yl)ethoxy]benzoic Acid (39). Methyl ester **38** (0.049 g, 0.076 mmol) was hydrolyzed according to the general procedure to afford the amine hydrochloride **39** (0.051 g, 100%) as a white powder. ¹H NMR (300 MHz, DMSO-*d*₆) δ 2.81–2.91 (m, 2 H) 2.96 (s, 2 H) 3.12 (s, 2 H) 3.17–3.30 (m, 4 H) 4.25 (t, *J* = 7.0 Hz, 2 H) 6.55 (d, *J* = 9.1 Hz, 1 H) 6.85 (dd, *J* = 8.9, 2.1 Hz, 1 H) 6.98 (d, *J* = 8.8 Hz, 2 H) 7.04–7.17 (m, 4 H) 7.17–7.30 (m, 4 H) 7.30–7.45 (m, 8 H) 7.71 (d, *J* = 1.9 Hz, 1 H) 7.86 (d, *J* = 8.8 Hz, 2 H) 8.86 (s, 1 H); HRMS: calcd for [C₄₀H₃₇ClN₂O₃ + H] 629.2566 found 629.2561.

Methyl 4-[2-[5-Chloro-1-(diphenylmethyl)-2-{2-[(methylsulfonyl)amino]ethyl}-1*H*-indo 1-3-yl)ethoxy]benzoate (40a). To a solution of amine 32b (0.30 g, 0.56 mmol) in CH₂Cl₂ (8 mL) were added Et₃N (0.19 mL, 1.4 mmol) and MsCl (0.043 mL, 0.56 mmol). The mixture was stirred for 10 min, diluted with sat. NaHCO₃ (40 mL), and extracted with CH₂Cl₂ (2 × 40 mL). The organic phase was washed with brine (40 mL), dried (Na₂SO₄), and concentrated. Flash chromatography (20 \rightarrow 50% EtOAc-hexanes) afforded methyl sulfonamide 40a (0.32 g, 92%) as a white foam. ¹H NMR (300 MHz, CDCl₃) δ 2.68 (s, 3 H), 3.04 (t, *J* = 6.7 Hz, 2 H), 3.12–3.37 (m, 4 H), 3.88 (s, 3 H), 4.17–4.35 (m, 3 H), 6.55 (d, *J* = 8.8 Hz, 1 H), 6.76–6.91 (m, 3 H), 6.95 (s, 1 H), 7.09 (dd, *J* = 5.9, 3.2 Hz, 4 H), 7.28–7.39 (m, 6 H), 7.56 (d, *J* = 1.9 Hz, 1 H), 7.96 (d, *J* = 8.5 Hz, 2 H).

Methyl 4-[2-(1-Benzhydryl-5-chloro-2-{2-[(phenylsulfonyl)amino]ethyl}-1*H*-indol-3-yl)ethoxy]benzoate (40b). To a solution of amine 32b (0.10 g, 0.19 mmol) in CH₂Cl₂ (4 mL) was added Et₃N (0.065 mL, 0.46 mmol) and benzenesulfonyl chloride (0.024 mL, 0.19 mmol). The mixture was stirred for 10 min, diluted with sat. NaHCO₃ (20 mL), and extracted with CH₂Cl₂ (2 × 10 mL). The organic phase was washed with brine (20 mL), dried (Na₂-SO₄), and concentrated. Flash chromatography (10 \rightarrow 20% EtOAc– hexanes) afforded phenyl sulfonamide 40b (0.11 g, 90%) as a white foam. ¹H NMR (300 MHz, CDCl₃) δ 2.92–2.95 (m, 2 H), 3.08– 3.19 (m, 4 H), 3.88 (s, 3 H), 4.18 (t, *J* = 6.7 Hz, 2 H), 4.68 (t, *J* = 6.0 Hz), 6.53 (d, *J* = 9.0 Hz, 1 H), 6.78–6.84 (m, 3 H), 6.91 (s, 1 H), 7.03–6.06 (m, 4 H), 7.26–7.29 (m, 5 H), 7.34–7.40 (m, 2 H), 7.47–7.53 (m, 2 H), 7.64 (dd, *J* = 8.3, 1.2 Hz, 2 H), 7.93 (d, *J* = 8.8 Hz, 2 H).

Methyl 4-[2-(1-Benzhydryl-2-{2-[(benzylsulfonyl)amino]ethyl}-5-chloro-1*H*-indol-3-yl)ethoxy]benzoate (40d). Amine 32b (2.0 g, 3.7 mmol) underwent sulfonylation using the general Schotten-Baumann procedure with α-toluenesulfonyl chloride (0.71 g, 3.7 mmol) for 1 h. Flash chromatography (0 → 1% MeOH-CH₂Cl₂) of the crude sulfonamide afforded 40d (2.2 g, 86%) as a white foam. ¹H NMR (300 MHz, CDCl₃) δ 2.78-2.92 (m, 2 H), 2.99-3.11 (m, 2 H), 3.18 (t, *J* = 6.3 Hz, 2 H), 3.88 (s, 3 H), 4.05 (s, 2 H), 4.11 (t, *J* = 6.0 Hz, 1 H), 4.20 (t, *J* = 6.5 Hz, 2 H), 6.52 (d, *J* = 8.8 Hz, 1 H), 6.78-6.93 (m, 4 H), 7.01-7.13 (m, 5 H), 7.13-7.22 (m, 3 H), 7.21-7.38 (m, 7 H), 7.53 (d, *J* = 1.9 Hz, 1 H), 7.96 (d, *J* = 8.8 Hz, 2 H).

Methyl 4-{2-[1-Benzhydryl-5-chloro-2-(2-{[(2-phenylethyl)sulfonyl]amino}ethyl)-1*H*-in dol-3-yl]ethoxy}benzoate (40e). Amine 32b (0.200 g, 0.37 mmol) underwent Schotten-Baumann sulfonylation with 2-phenylethanesulfonyl chloride⁵⁷ (0.140 g, 0.68 mmol) according to the general procedure for 1 h. Flash chromatography (25% EtOAc-hexanes) of the crude product afforded 40e (0.210 g, 81%) as a pale yellow foam. ¹H NMR (400 MHz, CDCl₃) δ 2.89–2.99 (m, 4 H), 2.99–3.08 (m, 2 H), 3.12 (t, *J* = 7.6 Hz, 2 H), 3.22 (t, *J* = 6.7 Hz, 2 H), 3.88 (s, 3 H), 4.00 (t, *J* = 6.3 Hz, 1 H), 4.23 (t, *J* = 6.6 Hz, 2 H), 6.53 (d, *J* = 9.3 Hz, 1 H), 6.78–6.89 (m, 3 H), 6.91 (s, 1 H), 7.03–7.10 (m, 6 H), 7.16–7.35 (m, 9 H), 7.54 (d, *J* = 1.8 Hz, 1 H), 7.95 (d, *J* = 9.1 Hz, 2 H).

4-[2-[5-Chloro-1-(diphenylmethyl)-2-{2-[(methylsulfonyl)amino]ethyl}-1*H***-indol-3-yl)ethoxy]benzoic Acid (41a). Methyl ester 40a** (0.32 g, 0.51 mmol) was hydrolyzed according to the general procedure to afford carboxylic acid **41a** (0.29 g, 95%) as a colorless oil. ¹H NMR (300 MHz, DMSO-*d*₆) δ 2.81 (s, 3 H), 3.08 (br s, 4 H), 3.20 (t, *J* = 6.5 Hz, 2 H), 4.24 (t, *J* = 6.7 Hz, 2 H), 6.48 (d, *J* = 8.8 Hz, 1 H), 6.81 (dd, *J* = 8.9, 2.1 Hz, 1 H), 6.99 (d, *J* = 9.1 Hz, 2 H), 7.11 (dd, *J* = 7.3, 4.8 Hz, 5 H), 7.26 (br s, 1 H), 7.31– 7.46 (m, 6 H), 7.67 (d, *J* = 2.2 Hz, 1 H), 7.85 (d, *J* = 8.8 Hz, 2 H); HRMS: calcd for [C₃₃H₃₁ClN₂O₅S + H] 603.1715 found 603.1701.

4-[2-(1-Benzhydryl-5-chloro-2-{2-[(phenylsulfonyl)amino]eth-yl}-1H-indol-3 -yl)ethoxy]benzoic Acid (41b). Methyl ester **40b** (0.114 g, 0.17 mmol) was hydrolyzed according to the general procedure to afford **41b** (0.101 g, 90%) as a white foam. ¹H NMR (300 MHz, DMSO- d_6) δ 2.77–2.90 (m, 2 H), 2.94–3.06 (m, 2 H), 3.13 (t, J = 6.3 Hz, 2 H), 4.19 (t, J = 6.3 Hz, 2 H), 6.50 (d, J = 9.1 Hz, 1 H), 6.80 (dd, J = 8.9, 2.1 Hz, 1 H), 6.93 (d, J = 8.8 Hz, 2 H), 7.00–7.10 (m, 5 H), 7.28–7.39 (m, 6 H), 7.49 (appart, J = 7.4 Hz, 2 H), 7.53–7.59 (m, J = 7.4 Hz, 1 H), 7.63–7.70 (m, 3 H), 7.84 (d, J = 8.8 Hz, 2 H), 7.90 (t, J = 5.8 Hz, 1 H); HRMS: calcd for [C₃₈H₃₃ClN₂O₅S + H] 665.1872 found 665.1864.

4-[2-(1-Benzhydryl-2-{2-[(benzylsulfonyl)amino]ethyl}-5-chloro-1H-indol-3 -yl)ethoxy]benzoic Acid (41d). Methyl ester **40d** (2.2 g, 3.2 mmol) was hydrolyzed according to the general procedure to afford **41d** (2.1 g, 95%), a white foam. ¹H NMR (300 MHz, DMSO-*d*₆) δ 3.00 (s, 4 H), 3.09–3.25 (m, 2 H), 4.16–4.33 (m, 4 H), 6.46 (d, *J* = 8.8 Hz, 1 H), 6.80 (dd, *J* = 8.9, 2.1 Hz, 1 H), 6.90–7.17 (m, 8 H), 7.18–7.48 (m, 12 H), 7.66 (d, *J* = 1.9 Hz, 1 H), 7.86 (d, *J* = 8.8 Hz, 2 H); MS (ESI) *m*/*z* 677.51 ((M – H)⁻); Anal. calcd for C₃₉H₃₅ClN₂O₅S: C, H, N. **4-{2-[1-Benzhydryl-5-chloro-2-(2-{[(2-phenylethyl)sulfonyl]-amino}ethyl)-1** *H*-indol-3-yl]ethoxy}benzoic Acid (41e). Methyl ester **40e** (0.18 g, 0.25 mmol) was hydrolyzed according to the general procedure to afford **41e** (0.15 g, 85%) as a white powder. ¹H NMR (400 MHz, DMSO-*d*₆) δ 2.81–2.92 (m, 2 H), 3.05–3.18 (m, 6 H), 3.21 (t, *J* = 6.8 Hz, 2 H), 4.25 (t, *J* = 6.7 Hz, 2 H), 6.48 (d, *J* = 8.8 Hz, 1 H), 6.81 (dd, *J* = 8.8, 2.0 Hz, 1 H), 6.98 (d, *J* = 9.1 Hz, 2 H), 7.03–7.17 (m, 7 H), 7.15–7.38 (m, 9 H), 7.40 (s, 1 H), 7.67 (d, *J* = 2.0 Hz, 1 H), 7.84 (d, *J* = 8.8 Hz, 2 H); HRMS: calcd for [C₄₀H₃₇ClN₂O₅S + H] 693.2190 found 693.2185.

Methyl 4-[2-(1-Benzhydryl-2-{2-[(benzylsulfonyl)(methyl)amino]ethyl}-5-chloro-1*H*-in dol-3-yl)ethoxy]benzoate (42). A suspension of 40d (0.100 g, 0.14 mmol) and Ag₂O (0.033 g, 0.14 mmol) in MeI (2 mL) was stirred overnight. The mixture was concentrated and filtered through Celite, washing with CH₂Cl₂. Concentration of the organic phase and flash chromatography (0 \rightarrow 1% MeOH-CH₂Cl₂) afforded 42 (0.096 g, 94%) as a white foam. ¹H NMR (300 MHz, CDCl₃) δ 2.62 (s, 3 H), 2.78-2.94 (m, 2 H), 2.96-3.09 (m, 2 H), 3.16 (t, *J* = 6.6 Hz, 2 H), 3.89 (s, 3 H), 4.09 (s, 2 H), 4.18 (t, *J* = 6.7 Hz, 2 H), 6.44 (d, *J* = 8.8 Hz, 1 H), 6.79 (dd, *J* = 8.9, 2.1 Hz, 1 H), 6.82-6.93 (m, 3 H), 7.00-7.11 (m, 4 H), 7.16-7.40 (m, 11 H), 7.52 (d, *J* = 1.9 Hz, 1 H), 7.97 (d, *J* = 9.1 Hz, 2 H).

4-[2-(1-Benzhydryl-2-{2-[(benzylsulfonyl)(methyl)amino]eth-yl}-5-chloro-1*H***-indol-3-yl)ethoxy]benzoic Acid (43). Methyl ester 42** (0.096 g, 0.13 mmol) was hydrolyzed according to the general procedure to afford **43** (0.088 g, 94%) as a pale yellow foam. ¹H NMR (300 MHz, DMSO- d_6) δ 2.63 (s, 3 H), 2.80–2.96 (m, 2 H), 2.95–3.12 (m, 2 H), 3.15 (t, J = 6.3 Hz, 2 H), 4.20 (t, J = 6.3 Hz, 2 H), 4.37 (s, 2 H), 6.48 (d, J = 8.8 Hz, 1 H), 6.80 (dd, J = 8.8, 2.2 Hz, 1 H), 6.90–7.14 (m, 6 H), 7.17–7.47 (m, 12 H), 7.65 (d, J = 1.2 Hz, 1 H), 7.87 (d, J = 8.8 Hz, 2 H); HRMS: calcd for [C₄₀H₃₇ClN₂O₅S + H] 693.2185 found 693.2199.

Methyl 4-(2-{5-Chloro-1-(diphenylmethyl)-2-[(*E*)-2-methoxyvinyl]-1H-indol-3-yl}ethox y)benzoate (45). KHMDS (3.2 g, 16 mmol) was added to a mixture of (methoxymethyl)triphenylphosphonium chloride (5.5 g, 16 mmol) in THF (80 mL) at -78 °C. The mixture was then stirred at 0 °C for 10 min. To the dark red suspension was added a 0 °C solution of aldehyde 12b (2.8 g, 5.3 mmol) in THF (40 mL) via cannula. The mixture was stirred for 1 h at 0 °C and 2 h at room temperature and then poured into sat. NH₄Cl (200 mL). The mixture was extracted with Et₂O (2 \times 80 mL). The organic phase was washed with H₂O and brine, dried (Na₂SO₄), and concentrated. Flash chromatography (5 \rightarrow 20% EtOAc-hexanes) afforded vinyl ether 45 (1.2 g, 40%), a yellow oil. ¹H NMR (300 MHz, CDCl₃) δ 3.21 – 3.27 (m, 2 H), 3.61 (s, 3 H), 3.88 (s, 3 H), 4.23 (t, *J* = 7.0 Hz, 2 H), 5.44 (d, *J* = 12.9 Hz, 1 H), 6.59 (d, J = 8.8 Hz, 1 H), 6.74–6.98 (m, 4 H), 7.05–7.17 (m, 4 H), 7.19-7.44 (m, 8 H), 7.55 (d, J = 1.9 Hz, 1 H), 7.97 (d, J = 8.8 Hz, 2 H).

Methyl 4-{2-[5-Chloro-1-(diphenylmethyl)-2-(2-oxoethyl)-1*H*indol-3-yl]ethoxy}benzoate (46). To a solution of vinyl ether 45 (0.50 g, 0.91 mmol) in MeCN (25 mL) were added NaI (0.16 g, 1.1 mmol) and TMSCl (0.14 mL, 1.1 mmol).⁵⁹ The orange suspension was stirred for 20 min, and 0.5 M aq Na₂S₂O₃ (100 mL) was then added. The mixture was extracted with EtOAc (3 × 50 mL). The organic phase was washed with H₂O and brine, dried (Na₂SO₄), and concentrated. Flash chromatography (10 \rightarrow 20% EtOAc-hexanes) afforded aldehyde 46 (0.22 g, 44%), an off-white foam. ¹H NMR (300 MHz, CDCl₃) δ 3.19 (t, *J* = 6.3 Hz, 2 H), 3.87 (s, 5 H), 4.19 (t, *J* = 6.3 Hz, 2 H), 6.59 (d, *J* = 8.8 Hz, 1 H), 6.72-6.95 (m, 4 H), 7.07 (d, *J* = 3.8 Hz, 4 H), 7.31 (m, 6 H), 7.57 (t, *J* = 1.9 Hz, 1 H), 7.79-8.13 (m, 2 H), 9.37 (d, *J* = 1.4 Hz, 1 H).

Methyl 4-{2-[5-Chloro-1-(diphenylmethyl)-2-(2-hydroxyethyl)-1*H*-indol-3-yl]ethoxy}benzoate (47). To a solution of aldehyde 46 (0.22 g, 0.40 mmol) in THF (10 mL) and MeOH (10 mL) at 0 °C was added NaBH₄ (0.018 g, 0.48 mmol). After 40 min, the mixture was concentrated. H₂O (30 mL) was added and the mixture was extracted with Et₂O (3 × 40 mL). The organic phase was washed with H₂O and brine, dried (Na₂SO₄), and concentrated to afford alcohol **47** (0.19 g, 87%), a white foam. ¹H NMR (300 MHz, CDCl₃) δ 1.80 (t, J = 5.8 Hz, 1 H), 3.12 (t, J = 6.5 Hz, 2 H), 3.26 (t, J = 6.7 Hz, 2 H), 3.62–3.84 (m, 2 H), 3.88 (s, 3 H), 4.27 (t, J = 6.6 Hz, 2 H), 6.49 (d, J = 8.8 Hz, 1 H), 6.80 (dd, J = 8.7, 2.1 Hz, 1 H), 6.89 (d, J = 8.8 Hz, 2 H), 6.99 (s, 1 H), 7.10 (dd, J = 5.5, 3.3 Hz, 4 H), 7.28–7.44 (m, 6 H), 7.54 (d, J = 1.9 Hz, 1 H), 7.96 (d, J = 8.8 Hz, 2 H).

Methyl 4-{2-[2-(2-Bromoethyl)-5-chloro-1-(diphenylmethyl)-1*H*-indol-3-yl]ethoxy}benzoate (48). To a solution of alcohol 47 (0.19 g, 0.35 mmol) in CH₂Cl₂ (20 mL) at 0 °C was added CBr₄ (0.42 g, 0.42 mmol) and bis(diphenylphosphino)propane (0.14 g, 0.35 mmol). After 1 h the ice bath was removed and the reaction mixture warmed to room temperature overnight. The reaction mixture was concentrated partially, and Et₂O (40 mL) was added. The precipitate was filtered, and the organic phase was concentrated. Flash chromatography (5 \rightarrow 20% EtOAc-hexanes) afforded bromide 48 (0.15 g, 69%), a white foam. ¹H NMR (300 MHz, CDCl₃) δ 3.10–3.30 (m, 4 H), 3.30–3.44 (m, 2 H), 3.88 (s, 3 H), 4.24 (t, *J* = 6.5 Hz, 2 H), 6.56 (d, *J* = 8.8 Hz, 1 H), 6.80–6.94 (m, 4 H), 7.10 (dd, *J* = 6.0, 2.7 Hz, 4 H), 7.29–7.38 (m, 3 H), 7.38–7.53 (m, 2 H), 7.56 (d, *J* = 1.9 Hz, 1 H), 7.70 (dd, *J* = 10.7, 7.4 Hz, 1 H), 7.97 (d, *J* = 8.8 Hz, 2 H).

Methyl 4-[2-(1-Benzhydryl-2-{2-[(benzylamino)sulfonyl]ethyl}-5-chloro-1H-indol-3-yl) ethoxy]benzoate (49). A mixture of bromide 48 (0.17 g) and Na₂SO₃ (0.042 g, 0.33 mmol) was heated to reflux in H₂O (20 mL) and dioxane (20 mL) for 5 d. The mixture was concentrated and lyophilized. To a suspension of the crude sodium sulfonate in CH₂Cl₂ (20 mL) were added DMF (0.022 mL, 0.28 mmol) and SOCl₂ (0.082 mL, 1.1 mmol). After 1 h the mixture was concentrated and azeotroped with toluene. The residue was suspended in CH₂Cl₂ (10 mL), and benzylamine (0.057 mL, 1.1 mmol) and sat. NaHCO₃ (5 mL) were added. The mixture was stirred overnight, and then the organic phase was separated and washed with H2O and brine, dried, and concentrated. Flash chromatography ($10 \rightarrow 50\%$ EtOAc-hexanes) afforded slightly impure product, which was further purified by preparative TLC (35% EtOAc-hexanes) to afford 0.0094 g (4% from alcohol 47) of the methyl ester 48. ¹H NMR (300 MHz, CDCl₃) δ 2.86 (dd, J = 10.9, 5.1 Hz, 2 H), 3.15 (t, J = 6.3 Hz, 2 H), 3.27–3.40 (m, 2 H), 3.87 (s, 3 H), 4.11 (d, J = 6.0 Hz, 2 H), 4.14–4.27 (m, 2 H), 4.41 (t, J = 5.9 Hz, 1 H), 6.54 (d, J = 8.8 Hz, 1 H), 6.78–6.92 (m, 4 H), 7.07 (d, J = 3.6 Hz, 4 H), 7.14–7.40 (m, 11 H), 7.53 (d, J = 1.6 Hz, 1 H), 7.95 (d, J = 8.8 Hz, 2 H).

4-[2-(1-Benzhydryl-2-{2-[(benzylamino)sulfonyl]ethyl}-5-chloro-1H-indol-3 -yl)ethoxy]benzoic Acid (50). Methyl ester **49** (0.0094 g, 0.014 mmol) was hydrolyzed according to the general procedure to afford 0.009 g (98%) of the title acid, a colorless oil. ¹H NMR (300 MHz, CDCl₃) δ 2.86 (dd, J = 11.3, 5.2 Hz, 2 H), 3.16 (t, J = 6.2 Hz, 2 H), 3.28–3.43 (m, 2 H), 4.12 (d, J = 6.3 Hz, 2 H), 4.15–4.31 (m, 2 H), 4.57 (t, J = 5.9 Hz, 1 H), 6.54 (d, J = 8.8 Hz, 1 H), 6.78–6.91 (m, 4 H), 7.06 (dd, J = 6.0, 2.7 Hz, 4 H), 7.17–7.40 (m, 11 H), 7.53 (d, J = 1.9 Hz, 1 H), 7.99 (d, J = 8.5 Hz, 2 H).

Methyl $4-\{2-[2-[(1E)-3-(Allyloxy)-3-oxoprop-1-en-1-y]]-5$ chloro-1-(diphenylmethyl)-1 *H*-indol-3-yl]ethoxy}benzoate (51). A solution of aldehyde 12b (5.0 g, 9.2 mmol) and allyl (triphenylphosphoranylidene)acetate (5.0 g, 13.9 mmol) in THF (250 mL) was stirred for 1 h. The reaction mixture was diluted with EtOAc (500 mL) and washed with H₂O (2 \times 125 mL) and brine $(2 \times 125 \text{ mL})$. The organic layer was dried and concentrated to afford a yellow oil which was dissolved in 50 mL 50% EtOAchexanes and filtered through a plug of SiO2. Concentration afforded olefin 51 (5.23 g, 91% yield), a yellow oil. ¹H NMR (300 MHz, CDCl₃) δ 3.19 (t, J = 6.6 Hz, 2 H), 3.71 (s, 3 H), 4.09 (t, J = 6.7Hz, 2 H), 4.49 (d, J = 5.8 Hz, 2 H), 5.02–5.25 (m, 2 H), 5.66– 5.91 (m, 1 H), 6.11 (d, J = 15.9 Hz, 1 H), 6.52 (d, J = 8.8 Hz, 1 H), 6.70 (d, J = 9.1 Hz, 2 H), 6.77 (dd, J = 8.9, 2.1 Hz, 1 H), 6.85 (s, 1 H), 6.89-7.00 (m, 4 H), 7.10-7.21 (m, 6 H), 7.47 (d, J =1.9 Hz, 1 H), 7.56 (d, J = 16.2 Hz, 1 H), 7.79 (d, J = 8.8 Hz, 2 H).

(2E)-3-(5-Chloro-1-(diphenylmethyl)-3-{2-[4-(methoxycarbonyl)phenoxy]ethyl}-1H-indol-2-yl)acrylic Acid (52). To a mixture of indole 51 (6.12 g, 9.8 mmol) and Pd(PPh₃)₄ (1.12 g, 1.0 mmol) in THF (75 mL) was added morpholine (8.60 mL, 9.8 mmol) dropwise over 20 min, and the resulting mixture was stirred for 4 h. The reaction mixture was poured into EtOAc (250 mL) and extracted with 1 N NaOH (2 \times 75 mL). The combined aqueous extracts were acidified with 1 N HCl and extracted with EtOAc $(3 \times 75 \text{ mL})$. The combined organic extracts were washed with brine (50 mL), dried, and concentrated to afford carboxylic acid **52** (5.40 g, 97%), a yellow oil. ¹H NMR (300 MHz, CDCl₃) δ 3.20 (t, J = 6.5 Hz, 2 H), 3.70 (s, 3 H), 4.10 (t, J = 6.6 Hz, 2 H),6.08 (d, J = 15.9 Hz, 1 H), 6.53 (d, J = 8.8 Hz, 1 H), 6.69 (d, J = 9.1 Hz, 2 H), 6.78 (dd, J = 8.9, 2.1 Hz, 1 H), 6.86 (s, 1 H), 6.89–6.98 (m, 4 H), 7.11–7.19 (m, 6 H), 7.48 (d, J = 1.6 Hz, 1 H), 7.63 (d, J = 15.9 Hz, 1 H), 7.78 (d, J = 8.8 Hz, 2 H)

3-(5-Chloro-1-(diphenylmethyl)-3-{2-[4-(methoxycarbonyl)phenoxy]ethyl}-1H-indol-2-yl)propanoic Acid (53). To a solution of carboxylic acid 52 (0.400 g, 0.70 mmol) in MeOH (15 mL) was added 5% Pt/C (80 mg) as a slurry MeOH (5 mL). The suspension was stirred under H₂ atmosphere (1 atm) for 24 h. The H₂ was then evacuated, and additional 5% Pt/C (80 mg) in MeOH (5 mL) was added. The suspension was stirred under H₂ atmosphere (1 atm) for an additional 24 h. ¹H NMR of an aliquot of the reaction mixture indicated that the reaction was complete. The mixture was filtered through Celite and the filtrate evaporated to afford carboxylic acid 53 (0.320 g, 79%), a yellow-green solid. ¹H NMR (300 MHz, CDCl₃) δ 3.17 (t, J = 6.7 Hz, 2 H), 3.69 (s, 3 H), 4.08 (t, J = 6.7 Hz, 2 H), 4.34 (d, J = 5.8 Hz, 2 H), 5.54 (t, J = 5.5 Hz)2 H), 6.49 (d, J = 9.1 Hz, 1 H), 6.67 (d, J = 8.8 Hz, 2 H), 6.74 (dd, J = 8.9, 2.1 Hz, 1 H), 6.85 (s, 1 H), 6.88-6.98 (m, 4 H),7.08-7.22 (m, 6 H), 7.44 (d, J = 1.9 Hz, 1 H), 7.76 (d, J = 8.8Hz. 2 H).

Methyl 4-{2-[5-Chloro-1-(diphenylmethyl)-2-(3-hydroxypropyl)-1H-indol-3-yl]ethoxy} benzoate (54). To a solution of carboxylic acid 53 (0.10 g, 0.20 mmol) in CH₂Cl₂ (1 mL) was added (COCl)₂ (0.034 g, 0.30 mmol), and the mixture was stirred for 1 h. The mixture was then evaporated to dryness, and the residue was dissolved in a mixture of Et₂O (1 mL) and TMEDA (0.027 mL). To this solution was added $Zn(BH_4)_2^{60}$ (0.35 mL of a soln in Et₂O), and the mixture was stirred for 15 min and then quenched by the addition of H₂O (1 mL). The mixture was diluted with Et₂O (10 mL), and the organic layer was dried and concentrated. Flash chromatography (10% EtOAc-hexanes) afforded alcohol 54 (0.081 g, 83%), a white foam. ¹H NMR (300 MHz, CDCl₃) δ 1.51–1.68 (m, 2 H), 2.67-2.86 (m, 2 H), 3.07 (t, J = 7.0 Hz, 2 H), 3.46 (t, *J* = 5.9 Hz, 2 H), 3.70 (s, 3 H), 4.04 (t, *J* = 7.0 Hz, 2 H), 6.32 (d, *J* = 8.8 Hz, 1 H), 6.61 (dd, *J* = 8.9, 2.1 Hz, 1 H), 6.71 (d, *J* = 9.1 Hz, 2 H), 6.75 (s, 1 H), 6.88–6.99 (m, 4 H), 7.10–7.19 (m, 6 H), 7.36 (d, J = 1.6 Hz, 1 H), 7.69–7.85 (m, 2 H).

Methyl 4-{2-[2-(3-Bromopropyl)-5-chloro-1-(diphenylmethyl)-1H-indol-3-yl]ethoxy}benzoate (55). To a solution of alcohol **54** (0.104 g, 0.20 mmol) in CH₂Cl₂ (2 mL) was added PS-PPh₃ (0.116 g, 1.61 mmol/g, 0.20 mmol) followed by CBr₄ (0.125 g, 0.40 mmol). The suspension was stirred for 2 h, filtered, and concentrated. The resulting orange oil was purified via column chromatography with 2% EtOAc-hexanes to give bromide **55** (0.100 g, 86%), a yellow foam. ¹H NMR (300 MHz, CDCl₃) δ 1.73–1.93 (m, 2 H), 2.74–2.90 (m, 2 H), 3.06 (t, *J* = 6.9 Hz, 2 H), 3.20 (t, *J* = 6.0 Hz, 2 H), 3.71 (s, 3 H), 4.04 (t, *J* = 7.0 Hz, 2 H), 6.63 (d, *J* = 8.8 Hz, 1 H), 6.63 (dd, *J* = 8.8, 2.2 Hz, 1 H), 6.67–6.75 (m, 3 H), 6.92 (dd, *J* = 5.9, 3.7 Hz, 4 H), 7.11–7.18 (m, 6 H), 7.36 (d, *J* = 2.2 Hz, 1 H), 7.79 (d, *J* = 8.8 Hz, 2 H).

Methyl 4-{2-[2-{3-[(Benzylsulfonyl)amino]propyl}-5-chloro-1-(diphenylmethyl)-1*H*-in dol-3-yl]ethoxy}benzoate (56). A solution of α -toluenesulfonamide (0.033 g, 0.20 mmol) in DMF (0.5 mL) was added to a suspension of NaH (0.008 g, 60% dispersion in mineral oil, 0.20 mmol) in DMF (0.5 mL). After 30 min, a solution of bromide 55 (0.100 g, 0.20 mmol) in DMF (0.5 mL) was added. After 1 h, the mixture was quenched with H₂O (10 mL) and extracted with EtOAc (10 mL). The organic layer was washed with water (2 × 5 mL) and brine (2 × 5 mL), dried, and evaporated to afford a yellow oil which was purified via column chromatography (5% EtOAc-hexanes) to afford sulfonamide **56** (0.020 g, 17% yield), a colorless oil. ¹H NMR (300 MHz, CDCl₃) δ 1.18–1.33 (m, 2 H), 2.37–2.61 (m, 4 H), 2.87 (t, *J* = 6.9 Hz, 2 H), 3.70 (s, 3 H), 3.77 (s, 2 H), 3.94 (t, *J* = 7.1 Hz, 2 H), 6.31 (d, *J* = 8.8 Hz, 1 H), 6.52 (s, 1 H), 6.57–6.71 (m, 3 H), 6.77–6.89 (m, 4 H), 6.94–7.00 (m, 1 H), 7.01–7.14 (m, 10 H), 7.31 (d, *J* = 1.9 Hz, 1 H), 7.76 (d, *J* = 8.8 Hz, 2 H).

4-{2-[2-{3-[(Benzylsulfonyl)amino]propyl}}-5-chloro-1-(diphenylmethyl)-1*H* -indol-3-yl]ethoxy}benzoic Acid (57). Hydrolysis of methyl ester **56** (0.020 g, 0.02 mmol) using the general procedure afforded carboxylic acid **57** (0.013 g, 80%). ¹H NMR (300 MHz, CDCl₃) δ 1.27–1.48 (m, 2 H), 2.58–2.80 (m, 4 H), 3.00 (t, *J* = 6.7 Hz, 2 H), 3.98–4.14 (m, 5 H), 6.35 (d, *J* = 8.8 Hz, 1 H), 6.56–6.74 (m, 4 H), 6.83–6.96 (m, 4 H), 7.05–7.20 (m, 11 H), 7.35 (d, *J* = 1.9 Hz, 1 H), 7.81 (d, *J* = 8.8 Hz, 2 H).

Methyl 4-{2-[2-[3-(Benzylthio)propyl]-5-chloro-1-(diphenylmethyl)-1H-indol-3-yl]etho xy } benzoate (58). A solution of benzyl mercaptan (0.211 g, 1.7 mmol) in DMF (1 mL) was added to a suspension of NaH (0.074 g, 60% in mineral oil, 1.9 mmol) in DMF (1 mL). After 30 min a solution of bromide 55 (0.260 g, 0.40 mmol) in DMF (0.5 mL) was added. After 1 h the mixture was quenched with H₂O and extracted with EtOAc (10 mL). The organic layer was washed with water $(2 \times 5 \text{ mL})$ and brine $(2 \times 5 \text{ mL})$ \times 5 mL), dried, and concentrated. Column chromatography (5% EtOAc-hexanes) afforded thioether 58 (0.160 g, 57%), a colorless oil. ¹H NMR (300 MHz, CDCl₃) δ 1.49–1.66 (m, 2 H), 2.23 (t, J = 6.9 Hz, 2 H), 2.69 (dd, J = 9.2, 6.7 Hz, 2 H), 3.02 (t, J = 7.1Hz, 2 H), 3.40 (s, 2 H), 3.71 (s, 3 H), 4.00 (t, J = 7.1 Hz, 2 H), 6.30 (d, J = 8.8 Hz, 1 H), 6.61 (dd, J = 8.9, 2.1 Hz, 1 H), 6.70 (d, J = 8.8 Hz, 3 H), 6.91 (dd, J = 5.6, 3.7 Hz, 4 H), 6.96-7.07 (m, 5 H), 7.10-7.18 (m, 6 H), 7.34 (d, J = 2.2 Hz, 1 H), 7.74-7.84(m, 2 H).

4-{2-[2-[3-(Benzylsulfony))propyl]-5-chloro-1-(diphenylmethyl)-1H-indol-3-yl]ethoxy}benzoic Acid (59). To a solution of thioether **58** (0.075 g, 0.10 mmol) in CH₂Cl₂ (1 mL) was added 55% MCPBA (0.075 g, 0.20 mmol). After 2 h the reaction mixture was diluted with EtOAc (25 mL) and washed with sat. NaHCO₃ and brine, dried, and evaporated. Flash chromatography (15% EtOAc-hexanes) afforded the sulfone (0.052 g, 66%), a yellow oil. Hydrolysis of the sulfone methyl ester (0.060 g, 0.10 mmol) using the general procedure afforded the carboxylic acid **59** (0.049 g, 85%). ¹H NMR (300 MHz, DMSO-*d*₆) δ 1.58–1.78 (m, 2 H), 2.81 (dd, *J* = 8.9, 6.5 Hz, 2 H), 2.88–3.05 (m, 4 H), 4.03 (t, *J* = 6.5 Hz, 2 H), 4.15 (s, 2 H), 6.35–6.41 (m, 1 H), 6.63 (dd, *J* = 6.7, 2.1 Hz, 1 H), 6.79 (d, *J* = 8.8 Hz, 1 H), 6.89 (d, *J* = 6.0 Hz, 4 H), 7.00 (d, *J* = 6.6 Hz, 4 H), 7.09–7.29 (m, 9 H), 7.47 (d, *J* = 1.9 Hz, 1 H), 7.65 (d, *J* = 8.8 Hz, 2 H).

4-{2-[5-Chloro-2-(2-{[(2-chlorobenzyl)sulfonyl]amino}ethyl)-**1-(diphenylmethyl)-1***H***-indol-3-yl]ethoxy}benzoic** Acid (118). To the methyl 4-{2-[2-(2-aminoethyl)-1-benzhydryl-5-chloro-1*H*-indol-3-yl]ethoxy}benzoate amine **32b** (215 mg, 0.4 mmol) was added (2-chlorophenyl)methanesulfonyl chloride (0.45 g, 2.0 mmol) using the Schotten–Baumann general procedure to generate the sulfonamide methyl ester (250 mg, 86% yield) as a white foam. ¹H NMR (300 MHz, CDCl₃) δ 2.88–2.97 (m, 2 H), 3.01–3.11 (m, 2 H), 3.18 (t, *J* = 6.5 Hz, 2 H), 3.88 (s, 3 H), 4.19 (t, *J* = 6.5 Hz, 1 H), 4.26 (t, *J* = 6.0 Hz, 1 H), 4.34 (s, 2 H), 6.50 (t, *J* = 8.8 Hz, 1 H), 6.78–6.93 (m, 4 H), 7.02–7.12 (m, 4 H), 7.14–7.28 (m, 2 H,) 7.28–7.36 (m, 7 H), 7.41 (d, *J* = 7.1 Hz, 1 H), 7.53 (d, *J* = 1.6 Hz, 1 H), 7.95 (d, *J* = 8.0 Hz, 2 H).

The ester from above (250 mg, 0.3 mmol) was hydrolyzed according to the general procedure to afford **118** (237 mg, 90% yield) as a yellow foam. ¹H NMR (300 MHz, CDCl₃) δ 2.95 (d, J = 14.0 Hz, 2 H), 3.02–3.13 (m, 2 H), 3.19 (t, J = 6.5 Hz, 2 H), 4.21 (t, J = 6.5 Hz, 2 H), 4.34 (s, 2 H), 4.48 (t, J = 5.9 Hz, 1 H), 6.50 (d, J = 8.8 Hz, 1 H), 6.78–6.94 (m, 4 H), 7.03–7.12 (m, 4 H), 7.14–7.25 (m, 2 H), 7.28–7.35 (m, 7 H), 7.41 (dd, J = 7.4, 1.9 Hz, 1 H), 7.53 (d, J = 2.2 Hz, 1 H), 8.00 (d, J = 8.8 Hz, 2 H); HRMS calcd for [C₃₉H₃₄Cl₂N₂O₅S + H] 713.1638 found 713.1644.

4-{**2**-[**5**-Chloro-2-(**2**-{[(**4**-chlorobenzyl)sulfonyl]amino}ethyl)-**1**-(diphenylmethyl)-1*H*-indol-3-yl]ethoxy}benzoic Acid (119). The sulfonamide ester was prepared from methyl 4-{2-[2-(2aminoethyl)-1-benzhydryl-5-chloro-1*H*-indol-3-yl]ethoxy}benzoate amine **32b** (100 mg, 0.19 mmol) and [(4-chloromethyl)phenyl]methanesulfonyl chloride (52 mg, 0.23 mmol) according to the Schotten−Baumann general procedure and purified using flash chromatography (20 → 40% EtOAc-hexanes) to afford the sulfonamide methyl ester (98 mg, 73% yield) as a white foam. ¹H NMR (300 MHz, CDCl₃) δ 2.86 (q, *J* = 6.9 Hz, 2 H), 3.07 (t, *J* = 7.4 Hz, 2 H), 3.18 (t, *J* = 6.5 Hz, 2 H), 3.87 (s, 3 H), 3.98 (s, 2 H), 4.17−4.36 (m, 3 H), 6.52 (d, *J* = 8.8 Hz, 2 H), 6.83 (appar d, *J* = 8.5 Hz, 3 H), 6.89 (s, 1 H), 7.00−7.13 (m, 6 H), 7.17−7.25 (m, 2 H), 7.28−7.39 (m, 5 H), 7.54 (d, *J* = 1.6 Hz, 1 H), 7.95 (d, *J* = 8.8 Hz, 2 H).

The ester from above (98 mg, 0.13 mmol) was hydrolyzed according to the general procedure to afford the title acid (95 mg, 99% yield) as a white foam. ¹H NMR (300 MHz, DMSO- d_6) δ 3.02 (br s, 4 H), 3.12–3.25 (m, 2 H), 4.22 (t, J = 7.1 Hz, 2 H), 4.28 (s, 2 H), 6.46 (d, J = 9.1 Hz, 1 H), 6.80 (dd, J = 8.9, 2.1 Hz, 1 H), 6.99 (d, J = 8.8 Hz, 2 H), 7.03–7.15 (m, 5 H), 7.17–7.50 (m, 11 H), 7.67 (d, J = 1.9 Hz, 1 H), 7.86 (d, J = 8.5 Hz, 2 H). HRMS calcd for [C₃₉H₃₄Cl₂N₂O₅S + H] 713.1638 found 713.1643.

4-{2-[5-Chloro-2-(2-{[(2,3-dichlorobenzyl)sulfonyl]amino}ethyl)-1-(diphenylmethyl)-1*H*-indol-3-yl]ethoxy}benzoic Acid (120). To the methyl 4-{2-[2-(2-aminoethyl)-1-benzhydryl-5-chloro-1*H*-indol-3-yl]ethoxy}benzoate amine **32b** (215 mg, 0.4 mmol) was added (2,3-dichlorophenyl)methanesulfonyl chloride (0.51 g, 2.0 mmol) according to the Schotten–Baumann procedure to generate the sulfonamide methyl ester (154 mg, 50% yield) as a white foam. ¹H NMR (300 MHz, CDCl₃) δ 2.93 (d, J = 8.0 Hz, 2 H), 3.03– 3.13 (m, 2 H), 3.18 (t, J = 6.6 Hz, 2 H), 3.86 (s, 3 H), 4.20 (t, J = 6.6 Hz, 2 H), 4.33 (s, 2 H), 4.39 (s, 1 H), 6.52 (d, J = 9.1 Hz, 1 H), 6.77–6.86 (m, 3 H), 6.91 (s, 1 H), 7.03–7.11 (m, 4 H), 7.27– 7.35 (m, 8 H), 7.40 (dd, J = 8.0, 1.4 Hz, 1 H), 7.53 (d, J = 1.9 Hz, 1 H), 7.94 (d, J = 8.8 Hz, 2 H).

The ester from above (154 mg, 0.2 mmol) was hydrolyzed by stirring with KOH (67 mg, 1.0 mmol) in THF (5 mL), MeOH (5 mL), and H₂O (2 mL). The reaction mixture was monitored by TLC (10% MeOH-CH₂Cl₂) for the disappearance of starting material. The mixture was stirred overnight at room temperature and then concentrated, diluted with H₂O, and acidified to pH 2-4 using 1 M HCl. The aqueous phase was extracted with EtOAc, and the organic phase was washed with brine, dried over Na₂SO₄, and concentrated to afford the desired product 120 (134 mg, 98% yield). ¹H NMR (300 MHz, CDCl₃) δ 2.88-3.00 (m, 2 H,) 3.04-3.15 (m, 2 H), 3.19 (t, J = 6.3 Hz, 2 H), 4.22 (t, J = 6.6 Hz, 2 H), 4.34 (s, 2 H), 4.52 (t, J = 6.2 Hz, 1 H), 6.52 (d, J = 8.8 Hz, 1 H), 6.78-6.94 (m, 4 H), 7.03-7.21 (m, 5 H), 7.31 (d, 7 H), 7.39 (dd, J = 8.1, 1.5 Hz, 1 H), 7.53 (d, J = 1.9 Hz, 1 H), 7.98 (d, J = 8.8Hz, 2 H). HRMS calcd for $[C_{39}H_{33}Cl_3N_2O_5S + H]$ 747.1249 found 747.1254.

4-{2-[5-Chloro-2-(2-{[(2,4-dichlorobenzyl)sulfonyl]amino}-ethyl)-1-(diphenylmethyl)-1H-indol-3-yl]ethoxy}benzoic Acid (121). To methyl 4-{2-[2-(2-aminoethyl)-1-benzhydryl-5-chloro-1*H*-indol-3-yl]ethoxy}benzoate amine **32b** (215 mg, 0.4 mmol) was added (2,4-dichlorophenyl)methanesulfonyl chloride (0.51 g, 2.0 mmol) according to the general Schotten—Baumann procedure to generate sulfonamide methyl ester (323 mg, 98% yield). ¹H NMR (300 MHz, CDCl₃) δ 2.93 (d, J = 7.7 Hz, 2 H), 3.04–3.14 (m, 2 H), 3.19 (t, J = 6.5 Hz, 2 H), 3.88 (s, 3 H), 4.21 (t, J = 6.5 Hz, 3 H), 4.27 (s, 2 H), 6.79–6.88 (m, 3 H), 6.91 (s, 1 H), 7.03–7.11 (m, 4 H), 7.17 (dd, J = 8.2, 2.2 Hz, 1 H), 7.28–7.38 (m, 8 H), 7.53 (d, J = 1.9 Hz, 1 H), 7.95 (d, J = 8.8 Hz, 2 H).

The ester from above (323 mg, 0.42 mmol) was hydrolyzed according to the general procedure to afford **121** (302 mg, 90% yield) as a white foam. ¹H NMR (300 MHz, CDCl₃) δ 2.88–3.01 (m, 2 H), 3.05–3.16 (m, 2 H), 3.20 (t, J = 6.6 Hz, 2 H), 4.23 (t, J = 6.5 Hz, 3 H), 4.27 (s, 2 H), 4.54 (s, 1 H), 6.52 (d, J = 8.8 Hz, 1 H), 6.78–6.94 (m, 4 H), 7.02–7.11 (m, 4 H), 7.16 (dd, J = 8.4, 2.1 Hz, 1 H), 7.28–7.37 (m, 8 H), 7.53 (d, J = 2.2 Hz, 1 H), 7.99

(d, J = 8.8 Hz, 2 H). HRMS calcd for $[C_{39}H_{33}Cl_3N_2O_5S + H]$ 747.1249 found 747.1255.

4-{**2**-[**5**-Chloro-2-(2-{[(3,5-dichlorobenzyl)sulfonyl]amino}ethyl)-1-(diphenylmethyl)-1*H*-indol-3-yl]ethoxy}benzoic Acid (**122**). The sulfonamide was prepared from methyl 4-{2-[2-(2aminoethyl)-1-benzhydryl-5-chloro-1*H*-indol-3-yl]ethoxy}benzoate amine **32b** (100 mg, 0.19 mmol) and (3,5-dichlorophenyl)methanesulfonyl chloride (60 mg, 0.23 mmol) according to the Schotten−Baumann procedure and purified using flash chromatography (20 → 40% EtOAc-hexanes) to afford the sulfonamide methyl ester (142 mg, 100% yield) as a white foam. ¹H NMR (300 MHz, CDCl₃) δ 2.70−2.98 (m, 2 H), 3.04−3.16 (m, 2 H), 3.20 (t, *J* = 6.5 Hz, 2 H), 3.86 (s, 3 H), 3.90 (s, 2 H), 4.23 (t, *J* = 6.3 Hz, 2 H), 4.42 (t, *J* = 6.2 Hz, 1 H), 6.55 (d, *J* = 8.8 Hz, 1 H), 6.75− 6.88 (m, 3 H), 6.92 (s, 1 H), 7.02−7.15 (m, 6 H), 7.22−7.39 (m, 7 H), 7.55 (d, *J* = 2.2 Hz, 1 H), 7.94 (d, *J* = 8.8 Hz, 2 H).

The ester intermediate (142 mg, 0.19 mmol) was hydrolyzed according to the general procedure to afford **122** (136 mg, 98% yield) as a white foam. ¹H NMR (300 MHz, DMSO- d_6) δ 2.92–3.24 (m, 6 H), 4.23 (t, J = 6.7 Hz, 2 H), 4.38 (s, 2 H), 6.45 (d, J = 9.1 Hz, 1 H), 6.80 (dd, J = 8.9, 2.1 Hz, 1 H), 6.99 (d, J = 8.8 Hz, 2 H), 7.05–7.26 (m, 5 H), 7.36 (d, J = 5.2 Hz, 8 H), 7.55 (t, J = 5.8 Hz, 1 H), 7.59 (d, J = 3.6 Hz, 1 H), 7.67 (d, J = 1.9 Hz, 1 H), 7.86 (d, J = 8.8 Hz, 2 H); HRMS calcd for [C₃₉H₃₃Cl₃N₂O₅S + H] 747.1249 found 747.1249.

4-{**2**-[**5**-Chloro-2-(2-{[(3,4-dichlorobenzyl)sulfonyl]amino}ethyl)-1-(diphenylmethyl)-1*H*-indol-3-yl]ethoxy}benzoic Acid (Ecopladib, 123). The sulfonamide was prepared from methyl 4-{2-[2-(2-aminoethyl)-1-benzhydryl-5-chloro-1*H*-indol-3-yl]ethoxy}benzoate amine **32b** (1.9 g, 3.50 mmol) and (3,4-dichlorophenyl)methanesulfonyl chloride (0.93 g, 3.60 mmol) according to the Schotten−Baumann procedure and purified using flash chromatography (20 → 50% EtOAc-hexanes) to afford the sulfonamide methyl ester (2.33 g, 87% yield) as a white foam. ¹H NMR (300 MHz, CDCl₃) δ 2.89 (q, *J* = 6.8 Hz, 2 H), 3.10 (t, *J* = 7.6 Hz, 2 H), 3.20 (t, *J* = 6.5 Hz, 2 H), 3.88 (s, 3 H), 3.93 (s, 2 H), 4.19− 4.37 (m, 3 H), 6.55 (d, *J* = 9.1 Hz, 1 H), 6.77−6.87 (m, 3 H), 6.91 (s, 1 H), 6.99 (dd, *J* = 8.2, 1.9 Hz, 1 H), 7.07 (dd, *J* = 6.5, 2.9 Hz, 4 H), 7.27−7.40 (m, 8 H), 7.54 (d, *J* = 1.6 Hz, 1 H), 7.95 (d, *J* = 9.1 Hz, 2 H).

The ester (2.33 g, 3.1 mmol) was hydrolyzed according to the general procedure to afford **123** (2.29 g, ~100% yield) as a white foam. ¹H NMR (300 MHz, DMSO- d_6) δ 2.88–3.25 (m, 6 H), 4.23 (t, J = 6.7 Hz, 2 H), 4.35 (s, 2 H), 6.46 (d, J = 8.8 Hz, 1 H), 6.80 (dd, J = 8.8, 2.2 Hz, 1 H), 6.99 (d, J = 8.8 Hz, 2 H), 7.05–7.15 (m, 5 H), 7.26 (dd, J = 8.2, 1.9 Hz, 1 H), 7.31–7.41 (m, 6 H), 7.46 (t, J = 5.9 Hz, 1 H), 7.53 (d, J = 8.2 Hz, 1 H), 7.56 (d, J = 1.9 Hz, 1 H), 7.67 (d, J = 1.9 Hz, 1 H), 7.86 (d, J = 8.8 Hz, 2 H); HRMS calcd for [C₃₉H₃₃Cl₃N₂O₅S + H] 747.1249 found 747.1249; Anal. Calcd for (C₃₉H₃₃Cl₃N₂O₅S): C, H, N.

GLU Micelle Assay. The assay was carried in a 96-well format using a fluorescent plate reader with a 355 nm excitation filter and a 460 nm emission filter (Lab Systems Fluoroscan II, Helsinki, Finland). The assay buffer contained 940 μ M Triton X-100, 50 mM HEPES pH 7.4, 0.3 mM EDTA, 1 mM CaCl₂ and 300 mM KCl. DTPC (1, 2-*O*-tetradecyl-*sn*-glycero-3-phosphocholine, Avanti) at a final concentration of 120 μ M was added the day of the experiment and GLU (7-hydroxycoumarinyl- γ -linolenate, Biomol Research Lab, Inc.) at a final concentration of 90 μ M was added immediately prior to each assay.

Compounds (10 μ L) dissolved in DMSO were placed in duplicate wells of a black 96-well plate. Wells corresponding to the positive and negative controls contained DMSO without inhibitors. Just prior to the experiment, 200 μ L assay buffer containing 90 μ M GLU and 120 μ M DTPC was added to all wells in the assay plate. Assay buffer (50 μ L) was added to the negative, and 50 μ L of cPLA₂ α solution (5 mg/mL in assay buffer) was added to all other wells to initiate the reaction. The final concentration of enzyme was 1 μ g/ mL. The content of each well was mixed gently during the addition of the enzyme, and the plate was rapidly transferred to the fluorescent plate reader. The increase in fluorescence was read every 4 min for 84 min. The slope of the resulting line was determined and the inhibition was calculated.

Rat Whole Blood Assay. Fresh blood was collected in heparinized tubes by cardiac puncture of male Sprague-Dawley rats. Aliquots of blood (0.6 mL) were incubated with 6 μ L of vehicle (DMSO) containing various concentrations of the test compounds. After 15 min preincubation at 37 °C, blood was stimulated with 6 μ L of calcium ionophore A23187 (Sigma C-7522) in DMSO for 10 min at 37 °C. The final concentration of A23187 was 5 μ M. DMSO (6 μ L) was added in the unstimulated controls. The reactions were stopped by mixing 60 μ L of cold EDTA to give a final concentration of 20 mM. The blood was centrifuged at 6500 rpm for 10 min on a microcentrifuge to obtain plasma. A 70 µL aliquot of plasma was mixed with 400 μ L of cold methanol for protein precipitation. After incubation at -80 °C for 30 min, the supernatant was obtained by centrifuging at 6500 rpm for 10 min and was assayed for TXB₂ according to the manufacturer's procedure (Assay Designs, Inc.).

Human Whole Blood Assay. Fresh blood was collected in heparinized tubes by venipuncture of healthy male volunteers. Aliquots of blood (0.9 mL) were incubated with 9 μ L of DMSO vehicle containing various concentrations of test compound. After 15 min preincubation at 37 °C, the blood was stimulated with 9 μ L of calcium ionophore A23187 (Sigma C-7522) in DMSO for 15 min at 37 °C. The final concentration of A23187 was 30 μ M. The unstimulated controls received 9 μ L of DMSO. The reactions were stopped by mixing 100 μ L of cold EDTA and processed as described for the rat whole blood assay. Supernatant was assayed for TXB₂, LTB₄, PGE₂, and PGF₂ α according to the manufacturer's procedures (Assay Designs, Inc.).

The PAF assay was performed in an identical manner to the above procedure, except the reactions were stopped by adding cold MeOH (2 mL) spiked with D4-PAF (25 ng/mL) which served as an internal standard.

The products were extracted with CHCl₃ (4 mL), and the samples in the CHCl₃ layer were applied to a silica column (Varian, Walnut Creek, CA, cat. # 12113036) which had been preconditioned with CHCl₃ (5 mL). The column was washed with EtOH (5 mL), and then the PAF was eluted with MeOH $-H_2O$ (4 mL, 3:1, v/v). The eluate was dried under vacuum.

In order to cleave the phosphocholine from the PAF, the dried product was suspended in PBS (300 μ L), and 5 units of phospholipase C (Sigma, St. Louis, MO, P9439) and Et₂O (1 mL) were added. The sample was rotated for 2 h, and the Et₂O layer containing the 1-*O*-hexadecyl-2-acetyl-glycerol was transferred to a new tube and dried under vacuum. The 1-*O*-hexadecyl-2-acetyl-glycerol was dissolved in CH₂Cl₂ (200 μ L), and 2,3,4,5,6-pentafluorobenzoyl chloride (50 μ L/mL) and DMAP (50 μ L/mL) were added. The resulting mixture was incubated at room temperature for 30 min. The samples were dried, resuspended in decane (50 μ L), and transferred to GC vials.

The samples were analyzed by GC-MS (HP6890 series GC with an NP5973 Mass Selective Detector, Hewlett-Packard (Agilent), Palo Alto, CA) using a HP-5MS column (cat. # 19091S-433). Samples (2 μ L) were injected in splitless mode at an injector temperature of 280 °C and helium gas (15 psi) as carrier. The injector was purged at 1.5 min. The column temperature was held at 180 °C for 1 min and then increased to 250 °C at 20 °C/min and held at 250 °C for 25 min. The transfer line to the mass detector was maintained at 280 °C. The mass detector was operated in the negative chemical ionization mode with methane as the reagent gas. The detection parameters were optimized using the autotune program provided with the instrument. The molecular ions of the pentafluorobenzoyl derivatives of 1-O-hexadecyl-2-acetylglycerol and 1-O-7,7,8,8-d₄-hexadecyl-2-acetyl-sn-glycerol were monitored at m/z of 552 and 556, respectively. The ratio of signal intensity at m/z 552 to 556 multiplied by the amount of D4-PAF internal standard added to the sample gave the amount of PAF generated in the A23187-stimulated blood.

Isothermal Calorimetry. Purified human cPLA₂α was dialyzed in 50 mM HEPES pH 7.4, 0.3 mM EDTA, 1 mM CaCl₂, and 300 mM KCl. DMSO and Trixon-X-100 were added to make a 2 mL protein solution consisting of 2.5 μ M cPLA₂ α , 1% DMSO, and 940 µM Trixon-X-100. A stock solution of compound (7.85 mM in 100% DMSO) was diluted with the dialysis buffer in which $cPLA_2\alpha$ was dialyzed previously to make 2 mL working solution that contained 78.5 µM compound 123, 940 µM Triton-X-100, and 1% DMSO. A control solution containing the dialysis buffer, 940 µM Triton-X-100 and 1% DMSO was made, and both solutions were degassed. The cPLA₂ α protein solution was loaded carefully into the sample cell of the calorimeter (VP-Isothermal Titration Calorimeter, Microcal Inc., Northampton, MA), while the syringe was filled with compound 123 working solution (250 μ L). The titration was carried out at 30 °C. A total of 20 injections (10 µL each) of the compound were made, and settings were as recommend by Microcal. A separate control experiment was done in which compound 123 was titrated against the buffer solution without any protein to determine the background. The data were analyzed using the Origin software supplied with the VP-Isothermal Titration Calorimeter, and the binding parameters were determined.

MC-9 Assay. MC-9 cells were grown in suspension with 10 units/mL murine IL-3 and 10% heat-inactivated fetal bovine serum in RPMI media supplemented with 2 mM L-glutamine, 100 units/mL penicillin, and 100 μ g/mL streptomycin. The day before the assay, cells were seeded at 4 × 10⁵ cells/mL in the same media and aforementioned additives. Murine IgE specific for Anti-DNP (5 μ L of a 27.5 ng/mL stock added per 200 mL of media) was added to prime the IgE receptor, and the cells were grown overnight.

On the day of the assay, the cells were pelleted and washed in serum-free RPMI that does not contain phenol red. The cells were then resuspended in 10 mL of the same serum-free media at 4×10^6 cells/mL. IL-3 (24 Units/mL) was added, and the cells were transferred to the 37 °C room where the assay was conducted.

Duplicate 96-well polypropylene plates containing inhibitors in 2 μ L in DMSO were prewarmed to 37 °C, and 200 μ L of cells was added to columns on the plate in 20-s intervals. Following 15 min of preincubation, the cells were stimulated by adding DNP-BSA to one plate and arachidonic acid to the duplicate plate. Stimulation and all other manipulations were done one column at a time in 20-s intervals. After an additional 4 min, 180 μ L of the cell suspension was transferred to a plate on ice containing 20 μ L of 20 mM EDTA per well to quench the reaction. The plate was then centrifuged at 1500 rpm for 10 min to pellet the cells, 150 μ L of prostaglandins and leukotrienes was determined according to the manufacturer's procedures (Assay Designs, Inc.).

Cyclooxygenase Assay. A colorimetric COX assay (Cayman, cat. # 760111) was used to measure inhibition of both COX-1 and COX-2. SC-560-7 (Cayman, cat. # 70340) was used as the reference compound for selective COX-1 inhibition and Celecoxib was used as the reference for COX-2 inhibition. The assay was performed according to the manufacturer's directions.

Pharmacokinetics in Rats. Male Sprague–Dawley rats (200– 300 g, Taconic, Germantown, NY) were used for PK assessment. For iv administration, animals (n = 3) received a single bolus dose of 2 mg/kg in vehicle (50% PEG-400, 50% DSMO) via tail vein injection. For oral administration, rats (n = 3) were dosed via gavage at 5 mg/kg in MC/Tween vehicle (0.5% methylcellulose and 2% Tween 80) or Phosal vehicle (55.5% Phosal 53 MCT, 5.6% Tween 80, 16.7% Labrasol, and 22.2% propylene carbonate) with test compound dissolved at 37.5 mg/mL vehicle, diluted with water, and dosed at 4 mL/kg. Blood samples were collected over a period of 24 h via jugular cannulae. Plasma concentrations of cPLA₂ α inhibitors were determined by LC/MS/MS. The pharmacokinetic parameters (AUC and clearance) were calculated with noncompartment method (WinNonlin, version 4.0, Pharsight Corp., Mountain View, CA).

Rat Carrageenan Air Pouch Model. Male Sprague–Dawley rats were anesthetized, and 10–20 mL of filtered air was injected subcutaneously under the dorsal skin to form a pouch. Three and six days later, the pouches were reinflated with 10–15 mL of sterile air. On the seventh day, the test compound was dissolved in vehicle

(55.5% Phosal 53 MCT, 5.6% Tween 80, 16.7% Labrasol, and 22.2% propylene carbonate) to give 37.5 mg of test compound per mL of vehicle. This test compound in vehicle was diluted with water to the appropriate concentration and dosed at 4 mL/kg. Vehicle treated animals received the same amount of vehicle as the animals treated with the highest dose of compound. Two hours later, 2 mL of a 1% solution of carrageenan (Viscarin carrageenan type GP-209NF from FMC Corporation, Philadelphia, PA) in saline was injected into the pouch. Six hours after the carrageenan injection, the rats were individually sacrificed and the contents of the pouch were harvested. The amount of fluid recovered was measured. An aliquot of the exudate was centrifuged at 6500 rpm for 10 min, and 300 μ L of each supernatant was precipitated with MeOH (800 μ L) precooled to 0 °C. The samples were well vortexed and were kept at -80 °C overnight. The samples were centrifuged again and assayed for PGE₂ (Assay Design Inc., Ann Arbor, MI) to locate the PGE_2 production within the linear range of the PGE_2 standard curve. To minimize the difference in binding environments for the standards and samples, the standard curve was generated in a 1% solution of carrageenan that was mixed with assay buffer to the same dilution as the samples. The approximate ED_{50} value was extrapolated from the dose-response curve.

Rat Carrageenan Paw Edema (CPE) Model. Male Sprague-Dawley rats weighing 190-250 g from Taconic Farms were housed for 1 week prior to experimentation and fed food and water ad libitum. The protocol for the CPE model was adapted from procedures previously described.55,61 The volume of the left hind footpad of the rat was measured using an Ugo Basile plethysmometer prior to dosing. The animal was then dosed orally with the test compound in Phosal vehicle (55.5% Phosal 53 MCT, 5.6% Tween 80, 16.7% Labrasol, and 22.2% propylene carbonate), orally with 10 mg/kg of Naproxen in phosal vehicle, or with vehicle alone as described above. Two hours after dosing, 60 µL of 1% carrageenan in sterile H2O was injected subplantar into the left hind footpad. The paw volume measurement was repeated 3 h after the carrageenan injection. Inhibition was calculated using the following formula: percent inhibition = $\{1 - [(3 h paw volume - 0 h paw volume - 0$ volume (test group)]/[3 h paw volume - 0 h paw volume (vehicle group)]} \times 100. There were 10 rats in each test group and the data represented is from four separate experiments.

Acknowledgment. The authors thank Nelson Huang, Ying Ge, Walter Massefski, and Ning Pan for analytical support. We thank Fuk-Wah Sum and Baihua Hu for investigation of synthetic routes. We also thank Molly Hoke, Wei Li, Jianchang Li, and Dianne DeVincentis of Wyeth Research and Howard Sard, Anu Mahadevan, Mario Gonzalez, and Shanghao Liu of Organix, Inc., for the preparation of chemical intermediates. We thank Marianne Donnelly for reviewing this manuscript.

Note Added after ASAP Publication. This manuscript was released ASAP on February 17, 2007 with an error in the caption of Scheme 8. The correct version was posted on February 19, 2007.

Supporting Information Available: Purity of final compounds as determined by HPLC in two solvent systems; details of CHN data for compounds 21, 43d, 123; experimental procedures for the preparation of compounds 10, 12a, 31a, 32a, 40c, 41c, 44, 60, 61, 63-67, 69-75, 77, 78, 80-95, 97-105, and 107-117. This material is available free of charge via the Internet at http://pubs.acs.org.

References

- Ramesha, C. S.; Pickett, W. C. Metabolism of platelet-activating factor by arachidonic acid-depleted rat polymorphonuclear leukocytes. *J. Biol. Chem.* **1986**, *261* (33), 15519–23.
- (2) McIntyre, T. M.; Reinhold, S. L.; Prescott, S. M.; Zimmerman, G. A. Protein kinase C activity appears to be required for the synthesis of platelet-activating factor and leukotriene B₄ by human neutrophils. *J. Biol. Chem.* **1987**, *262* (32), 15370–6.
- (3) Kudo, I.; Murakami, M. Phospholipase A₂ enzymes. Prostaglandins Other Lipid Mediat. 2002, 68–69, 3–58.

- (4) Hanel, A. M.; Schuttel, S.; Gelb, M. H. Processive interfacial catalysis by mammalian 85-kilodalton phospholipase A₂ enzymes on productcontaining vesicles: application to the determination of substrate preferences. *Biochemistry* **1993**, *32* (23), 5949–58.
- (5) Clark, J. D.; Schievella, A. R.; Nalefski, E. A.; Lin, L.-L. Cytosolic phospholipase A₂. J. Lipid Mediat. Cell Signal. 1995, 12 (2, 3), 83– 117.
- (6) Uozumi, N.; Kume, K.; Nagase, T.; Nakatani, N.; Ishii, S.; Tashiro, F.; Komagata, Y.; Maki, K.; Ikuta, K.; Ouchi, Y.; Miyazaki, J.-i.; Shimizu, T. Role of cytosolic phospholipase A₂ in allergic response and parturition. *Nature* **1997**, *390* (6660), 618–622.
- (7) Bonventre, J. V.; Huang, Z.; Taheri, M. R.; O'Leary, E.; Li, E.; Moskowitz, M. A.; Sapirstein, A. Reduced fertility and postischemic brain injury in mice deficient in cytosolic phospholipase A₂. *Nature* **1997**, *390* (6660), 622–625.
- (8) Nagase, T.; Uozumi, N.; Ishii, S.; Kita, Y.; Yamamoto, H.; Ohga, E.; Ouchi, Y.; Shimizu, T. A pivotal role of cytosolic phospholipase A₂ in bleomycin-induced pulmonary fibrosis. *Nat. Med.* **2002**, *8* (5), 480–484.
- (9) Langenbach, R.; Morham, S. G.; Tiano, H. F.; Loftin, C. D.; Ghanayem, B. I.; Chulada, P. C.; Mahler, J. F.; Lee, C. A.; Goulding, E. H.; Kluckman, K. D.; Kim, H. S.; Smithies, O. Prostaglandin synthase 1 gene disruption in mice reduces arachidonic acid-induced inflammation and indomethacin-induced gastric ulceration. *Cell* **1995**, *83* (3), 483–92.
- (10) Lim, H.; Paria, B. C.; Das, S. K.; Dinchuk, J. E.; Langenbach, R.; Trzaskos, J. M.; Dey, S. K. Multiple female reproductive failures in cyclooxygenase 2-deficient mice. *Cell* **1997**, *91* (2), 197–208.
- (11) Song, H.; Lim, H.; Paria, B. C.; Matsumoto, H.; Swift, L. L.; Morrow, J.; Bonventre, J. V.; Dey, S. K. Cytosolic phospholipase A₂α is crucial for "on-time" embryo implantation that directs subsequent development. *Development* **2002**, *129* (12), 2879–2889.
- (12) Nagase, T.; Uozumi, N.; Ishii, S.; Kume, K.; Izumi, T.; Ouchi, Y.; Shimizu, T. Acute lung injury by sepsis and acid aspiration: a key role for cytosolic phospholipase A₂. *Nature Immunol.* **2000**, *1* (1), 42–46.
- (13) Hegen, M.; Sun, L.; Uozumi, N.; Kume, K.; Goad, M. E.; Nickerson-Nutter, C. L.; Shimizu, T.; Clark, J. D. Cytosolic phospholipase A₂αdeficient mice are resistant to collagen-induced arthritis. *J. Exp. Med.* **2003**, *197* (10), 1297–1302.
- (14) Klivenyi, P.; Beal, M. F.; Ferrante, R. J.; Andreassen, O. A.; Wermer, M.; Chin, M.-R.; Bonventre, J. V. Mice deficient in group IV cytosolic phospholipase A₂ are resistant to MPTP neurotoxicity. *J. Neurochem.* **1998**, *71* (6), 2634–2637.
- (15) Hong, K. H.; Bonventre, J. C.; O'Leary, E.; Bonventre, J. V.; Lander, E. S. Deletion of cytosolic phospholipase A₂ suppresses Apc^{Min}induced tumorigenesis. *Proc. Natl. Acad. Sci. U.S.A.* **2001**, *98* (7), 3935–3939.
- (16) Takaku, K.; Sonoshita, M.; Sasaki, N.; Uozumi, N.; Doi, Y.; Shimizu, T.; Taketo, M. M. Suppression of intestinal polyposis in Apc^{A716} knockout mice by an additional mutation in the cytosolic phospholipase A₂ gene. J. Biol. Chem. 2000, 275 (44), 34013–34016.
- (17) Tabuchi, S.; Uozumi, N.; Ishii, S.; Shimizu, Y.; Watanabe, T.; Shimizu, T. Mice deficient in cytosolic phospholipase A₂ are less susceptible to cerebral ischemia/reperfusion injury. *Brain Edema XII*, *Proc. Int. Symp.*, 12th, 2002 (2003), 169–172.
- (18) Marusic, S.; Leach, M. W.; Pelker, J. W.; Azoitei, M. L.; Uozumi, N.; Cui, J.; Shen, M. W. H.; DeClercq, C. M.; Miyashiro, J. S.; Carito, B. A.; Thakker, P.; Simmons, D. L.; Leonard, J. P.; Shimizu, T.; Clark, J. D. Cytosolic phospholipase A₂α-deficient mice are resistant to experimental autoimmune encephalomyelitis. *J. Exp. Med.* **2005**, 202 (6), 841–851.
- (19) Myers, L. K.; Kang, A. H.; Postlethwaite, A. E.; Rosloniec, E. F.; Morham, S. G.; Shlopov, B. V.; Goorha, S.; Ballou, L. R. The genetic ablation of cyclooxygenase 2 prevents the development of autoimmune arthritis. *Arthritis Rheum.* **2000**, *43* (12), 2687–2693.
- (20) Oshima, M.; Dinchuk, J. E.; Kargman, S. L.; Oshima, H.; Hancock, B.; Kwong, E.; Trzaskos, J. M.; Evans, J. F.; Taketo, M. M. Suppression of intestinal polyposis in Apc^{Δ716} knockout mice by inhibition of cyclooxygenase 2 (COX-2). *Cell* **1996**, 87 (5), 803–809.
- (21) Feng, Z.; Li, D.; Fung, P. C. W.; Pei, Z.; Ramsden, D. B.; Ho, S.-L. COX-2-deficient mice are less prone to MPTP-neurotoxicity than wild-type mice. *NeuroReport* 2003, *14* (15), 1927–1929.
- (22) Irvin, C. G.; Tu, Y. P.; Sheller, J. R.; Funk, C. D. 5-Lipoxygenase products are necessary for ovalbumin-induced airway responsiveness in mice. Am. J. Physiol. 1997, 272 (6 Pt 1), L1053-8.
- (23) Peters-Golden, M.; Bailie, M.; Marshall, T.; Wilke, C.; Phan Sem, H.; Toews Galen, B.; Moore Bethany, B. Protection from pulmonary fibrosis in leukotriene-deficient mice. *Am. J. Respir. Crit. Care Med.* **2002**, *165* (2), 229–35.

- (24) Griffiths, R. J.; Smith, M. A.; Roach, M. L.; Stock, J. L.; Stam, E. J.; Milici, A. J.; Scampoli, D. N.; Eskra, J. D.; Byrum, R. S.; Koller, B. H.; McNeish, J. D. Collagen-induced arthritis is reduced in 5-lipoxygenase-activating protein-deficient mice. *J. Exp. Med.* **1997**, *185* (6), 1123–1129.
- (25) Clark, J. D.; Tam, S. Potential therapeutic uses of phospholipase A₂ inhibitors. *Expert Opin. Ther. Pat.* **2004**, *14* (7), 937–950.
- (26) Lehr, M. Inhibitors of cytosolic phospholipase A₂α as potential antiinflammatory drugs. Anti-Inflammatory Anti-Allergy Agents Med. Chem. 2006, 5 (2), 149–161.
- (27) Magrioti, V.; Kokotos, G. Synthetic inhibitors of group IVA and group VIA phospholipase A₂. Anti-Inflammatory Anti-Allergy Agents Med. Chem. **2006**, 5 (2), 189–203.
- (28) Ono, T.; Yamada, K.; Chikazawa, Y.; Ueno, M.; Nakamoto, S.; Okuno, T.; Seno, K. Characterization of a novel inhibitor of cytosolic phospholipase A₂α, pyrrophenone. *Biochem. J.* **2002**, *363* (3), 727– 735.
- (29) Seno, K.; Okuno, T.; Nishi, K.; Murakami, Y.; Yamada, K.; Nakamoto, S.; Ono, T. Pyrrolidine inhibitors of human cytosolic phospholipase A₂. Part 2. Synthesis of potent and crystallized 4-triphenylmethylthio derivative 'Pyrrophenone'. *Bioorg. Med. Chem. Lett.* **2001**, *11* (4), 587–590.
- (30) Lehr, M.; Klimt, M.; Elfringhoff, A. S. Novel 3-dodecanoylindole-2-carboxylic acid inhibitors of cytosolic phospholipase A₂. *Bioorg. Med. Chem. Lett.* 2001, 11 (19), 2569–2572.
- (31) Griessbach, K.; Klimt, M.; Elfringhoff, A. S.; Lehr, M. Structureactivity relationship studies of 1-substituted 3-dodecanoylindole-2carboxylic acids as inhibitors of cytosolic phospholipase A₂-mediated arachidonic acid release in intact platelets. *Arch. Pharm.* 2003, 335 (11–12.), 547–555.
- (32) Ghasemi, A.; Elfringhoff, A. S.; Lehr, M. Structure-activity relationship studies of 3-dodecanoylindole-2-carboxylic acid inhibitors of cytosolic phospholipase A₂α-mediated arachidonic acid release in intact platelets: variation of the keto moiety. *J. Enzyme Inhib. Med. Chem.* **2005**, *20* (5), 429–437.
- (33) Connolly, S.; Bennion, C.; Botterell, S.; Croshaw, P. J.; Hallam, C.; Hardy, K.; Hartopp, P.; Jackson, C. G.; King, S. J.; Lawrence, L.; Mete, A.; Murray, D.; Robinson, D. H.; Smith, G. M.; Stein, L.; Walters, I.; Wells, E.; Withnall, W. J. Design and synthesis of a novel and potent series of inhibitors of cytosolic phospholipase A₂ based on a 1,3-disubstituted propan-2-one skeleton. *J. Med. Chem.* 2002, *45* (6), 1348–1362.
- (34) Kokotos, G.; Kotsovolou, S.; Six, D. A.; Constantinou-Kokotou, V.; Beltzner, C. C.; Dennis, E. A. Novel 2-oxoamide inhibitors of human group IVA phospholipase A₂. J. Med. Chem. 2002, 45 (14), 2891– 2893.
- (35) Kokotos, G.; Six, D. A.; Loukas, V.; Smith, T.; Constantinou-Kokotou, V.; Hadjipavlou-Litina, D.; Kotsovolou, S.; Chiou, A.; Beltzner, C. C.; Dennis, E. A. Inhibition of group IVA cytosolic phospholipase A₂ by novel 2-oxoamides in vitro, in cells, and in vivo. *J. Med. Chem.* **2004**, *47* (14), 3615–3628.
- (36) Yaksh, T. L.; Kokotos, G.; Svensson, C. I.; Stephens, D.; Kokotos, C. G.; Fitzsimmons, B.; Hadjipavlou-Litina, D.; Hua, X.-Y.; Dennis, E. A. Systemic and intrathecal effects of a novel series of phospholipase A₂ inhibitors on hyperalgesia and spinal prostaglandin E₂ release. *J. Pharmacol. Exp. Ther.* **2006**, *316* (1), 466–475.
- (37) Ludwig, J.; Bovens, S.; Brauch, C.; Schulze Elfringhoff, A.; Lehr, M. Design and synthesis of 1-Indol-1-yl-propan-2-ones as inhibitors of human cytosolic phospholipase A₂α. *J. Med. Chem.* **2006**, *49* (8), 2611–2620.
- (38) Fries, S.; Grosser, T.; Price, T. S.; Lawson, J. A.; Kapoor, S.; Demarco, S.; Pletcher, M. T.; Wiltshire, T.; Fitzgerald, G. A. Marked interindividual variability in the response to selective inhibitors of cyclooxygenase-2. *Gastroenterology* **2006**, *130* (1), 55–64.
- (39) Brooks, C. D. W.; Summers, J. B. Modulators of leukotriene biosynthesis and receptor activation. J. Med. Chem. 1996, 39 (14), 2629–2654.
- (40) McKew, J. C.; Lovering, F.; Clark, J. D.; Bemis, J.; Xiang, Y.; Shen, M.; Zhang, W.; Alvarez, J. C.; Joseph-McCarthy, D. Structure-activity relationships of indole cytosolic phospholipase A₂α inhibitors: substrate mimetics. *Bioorg. Med. Chem. Lett.* **2003**, *13* (24), 4501– 4504.
- (41) McKew, J. C.; Foley, M. A.; Thakker, P.; Behnke, M. L.; Lovering, F. E.; Sum, F.-W.; Tam, S.; Wu, K.; Shen, M. W. H.; Zhang, W.; Gonzalez, M.; Liu, S.; Mahadevan, A.; Sard, H.; Khor, S. P.; Clark, J. D. J. Med. Chem. **2006**, 49 (1), 135–158.
- (42) Mahadevan, A.; Sard, H.; Gonzalez, M.; McKew, J. C. A general method for C3 reductive alkylation of indoles. *Tetrahedron Lett.* 2003, 44 (24), 4589–4591.
- (43) Appleton, J. E.; Dack, K. N.; Green, A. D.; Steele, J. A mild and selective C-3 reductive alkylation of indoles. *Tetrahedron Lett.* 1993, 34 (9), 1529–32.

- (44) Yamada, F.; Makita, Y.; Suzuki, T.; Somei, M. The chemistry of indoles. XXVI. A total and practical synthesis of ergot alkaloid, (+/-)-aurantioclavine. *Chem. Pharm. Bull.* **1985**, *33* (5), 2162–3.
- (45) Claudi, F.; Di Stefano, A.; Napolitani, F.; Cingolani, G. M.; Giorgioni, G.; Fontenla, J. A.; Montenegro, G. Y.; Rivas, M. E.; Rosa, E.; Michelotto, B.; Orlando, G.; Brunetti, L. Binding and preliminary evaluation of 5-hydroxy- and 10-hydroxy-2,3,12,12a-tetrahydro-1*H*-[1]benzoxepino[2,3,4-*ij*]isoquinolines as dopamine receptor ligands. J. Med. Chem. **2000**, 43 (4), 599–608.
- (46) Wolfe, J. P.; Tomori, H.; Sadighi, J. P.; Yin, J.; Buchwald, S. L. Simple, efficient catalyst system for the palladium-catalyzed amination of aryl chlorides, bromides, and triflates. *J. Org. Chem.* 2000, 65 (4), 1158–1174.
- (47) Kokotos, G.; Noula, C. Selective one-pot conversion of carboxylic acids into alcohols. J. Org. Chem. 1996, 61 (20), 6994–6996.
- (48) Larock, R. C.; Yum, E. K.; Refvik, M. D. Synthesis of 2,3disubstituted indoles via palladium-catalyzed annulation of internal alkynes. J. Org. Chem. 1998, 63 (22), 7652–7662.
- (49) Raucher, S.; Koolpe, G. A. Synthesis of substituted indoles via Meerwein arylation. J. Org. Chem. **1983**, 48 (12), 2066-9.
- (50) Gandolfi, C. A.; Di Domenico, R.; Spinelli, S.; Gallico, L.; Fiocchi, L.; Lotto, A.; Menta, E.; Borghi, A.; Rosa, C. D.; Tognella, S. N-Acyl-2-substituted-1,3-thiazolidines, a new class of non-narcotic antitussive agents: studies leading to the discovery of ethyl 2-[(2-methoxyphenoxy)methyl]-β-oxothiazolidine-3-propanoate. J. Med. Chem. 1995, 38 (3), 508-25.
- (51) Abdel-Magid, A. F.; Carson, K. G.; Harris, B. D.; Maryanoff, C. A.; Shah, R. D. Reductive amination of aldehydes and ketones with sodium triacetoxyborohydride. Studies on direct and indirect reductive amination procedures. J. Org. Chem. 1996, 61 (11), 3849– 3862.
- (52) Ohto, T.; Uozumi, N.; Hirabayashi, T.; Shimizu, T. Identification of novel cytosolic phospholipase A₂s, murine cPLA₂δ, ε, and ζ, which form a gene cluster with cPLA₂β. J. Biol. Chem. **2005**, 280 (26), 24576–24583.

- (53) Smith, C. J.; Zhang, Y.; Koboldt, C. M.; Muhammad, J.; Zweifel, B. S.; Shaffer, A.; Talley, J. J.; Masferrer, J. L.; Seibert, K.; Isakson, P. C. Pharmacological analysis of cyclooxygenase-1 in inflammation. *Proc. Natl. Acad. Sci. U.S.A.* **1998**, *95* (22), 13313–13318.
- (54) Masferrer, J. L.; Zweifel, B. S.; Manning, P. T.; Hauser, S. D.; Leahy, K. M.; Smith, W. G.; Isakson, P. C.; Seibert, K. Selective inhibition of inducible cyclooxygenase 2 in vivo is antiinflammatory and nonulcerogenic. *Proc. Natl. Acad. Sci. U.S.A.* **1994**, *91* (8), 3228–32.
- (55) Otterness, I. G.; Bliven, M. L. In Nonsteroidal Anti-Inflammatory Drugs (Chemistry and Pharmacology of Drugs, Vol. 5); Lombardino, J. G., Ed.; Wiley: New York, 1985; pp 111–252.
- (56) Mukherjee, A.; Hale, V. G.; Borga, O.; Stein, R. Predictability of the clinical potency of NSAIDs from the preclinical pharmacodynamics in rats. *Inflamm. Res.* **1996**, *45* (11), 531–540.
- (57) Abramovitch, R. A.; Kress, A. O.; McManus, S. P.; Smith, M. R. Solution and flash vacuum pyrolyses of 3-arylpropanesulfonyl and 2-(aryloxy)ethanesulfonyl azides. Synthesis of 7- and 8-membered sultams. J. Org. Chem. **1984**, 49 (17), 3114–3121.
- (58) Zhong, Z.; Bibbs, J. A.; Yuan, W.; Wong, C. H. Active-site-directed, modification of subtilisin. J. Am. Chem. Soc. 1991, 113 (6), 2259– 2263.
- (59) Kosarych, Z.; Cohen, T. Rapid high-yield cleavage of enol and dienol methyl ethers under mild conditions using chlorotrimethylsilane/ sodium iodide. *Tetrahedron Lett.* **1980**, *22* (41), 3959–3962.
- (60) Nakata, T.; Tanaka, T.; Oishi, T. Highly stereoselective synthesis of erythro-α,β-epoxy alcohols by the reduction of α,β-epoxy ketones with zinc borohydride. *Tetrahedron Lett.* **1981**, *22* (47), 4723–4726.
- (61) Winter, C. A.; Risley, E. A.; Nuss, G. W. Carrageenan-induced edema in hind paw of rat as an assay for antiinflammatory drugs. *Proc. Soc. Exp. Biol. Med.* **1962**, *111*, 544–547.

JM061131Z